留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiO2@Gd2O3:Yb3+, Ln3+ (Ln=Er, Tm, Ho)核壳微球的制备及上转换发光性能

陈杰 王超 尹玉 刘蓉 曾晓丹 刘治刚

陈杰, 王超, 尹玉, 等. SiO2@Gd2O3:Yb3+, Ln3+ (Ln=Er, Tm, Ho)核壳微球的制备及上转换发光性能[J]. 复合材料学报, 2023, 40(7): 4072-4081. doi: 10.13801/j.cnki.fhclxb.20220919.001
引用本文: 陈杰, 王超, 尹玉, 等. SiO2@Gd2O3:Yb3+, Ln3+ (Ln=Er, Tm, Ho)核壳微球的制备及上转换发光性能[J]. 复合材料学报, 2023, 40(7): 4072-4081. doi: 10.13801/j.cnki.fhclxb.20220919.001
CHEN Jie, WANG Chao, YIN Yu, et al. Preparation and upconversion luminescence properties of SiO2@Gd2O3:Yb3+, Ln3+ (Ln=Er, Tm, Ho) core-shell microspheres[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4072-4081. doi: 10.13801/j.cnki.fhclxb.20220919.001
Citation: CHEN Jie, WANG Chao, YIN Yu, et al. Preparation and upconversion luminescence properties of SiO2@Gd2O3:Yb3+, Ln3+ (Ln=Er, Tm, Ho) core-shell microspheres[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4072-4081. doi: 10.13801/j.cnki.fhclxb.20220919.001

SiO2@Gd2O3:Yb3+, Ln3+ (Ln=Er, Tm, Ho)核壳微球的制备及上转换发光性能

doi: 10.13801/j.cnki.fhclxb.20220919.001
基金项目: 国家自然科学基金(51902125);吉林省科技发展计划资助项目(YDZJ202101 ZYTS029);吉林市科技发展计划资助项目(20210103092)
详细信息
    通讯作者:

    陈杰,博士,副教授,硕士生导师,研究方向为功能复合材料的制备与应用 E-mail: jiechendr@163.com

  • 中图分类号: O734;TB333

Preparation and upconversion luminescence properties of SiO2@Gd2O3:Yb3+, Ln3+ (Ln=Er, Tm, Ho) core-shell microspheres

Funds: National Natural Science Foundation of China (51902125); Science and Technology Development Plan of Jilin Province (YDZJ202101 ZYTS029); Science and Technology Development Plan of Jilin City (20210103092)
  • 摘要: 为了解决稀土掺杂上转换发光材料价格昂贵且粒径可控性差的问题,采用简单的化学沉淀法以价格低廉且易制备的SiO2微球为核,在其表面均匀包覆了Gd2O3:Yb3+, Ln3+(Ln=Er, Tm, Ho)壳层,成功合成了球形SiO2@Gd2O3:Yb3+, Ln3+(Ln=Er, Tm, Ho)核壳上转换发光材料。XRD结果表明,尿素作为沉淀剂优先与稀土离子反应得到SiO2@Gd(OH)CO3:Yb3+, Ln3+前驱体,经800℃煅烧后壳层进一步转化成结晶性良好的立方相Gd2O3:Yb3+, Ln3+。SEM和尺寸分布图表明,所制备样品为理想的核壳微球形貌,尺寸均匀,平均粒径约为580 nm。在980 nm激光激发下,SiO2@Gd2O3:Yb3+, Ln3+(Ln=Er, Tm, Ho)核壳微球分别表现出红光、蓝光、绿光发射,对应于Er3+4F9/24I15/2跃迁、Tm3+1G43H6跃迁及Ho3+5S25I8跃迁,与色度图色坐标发光颜色区域相一致,说明通过简单的调节SiO2@Gd2O3:Yb3+, Ln3+核壳微球中壳层掺杂的稀土离子种类,成功实现了三色上转换发光。

     

  • 图  1  (a) SiO2、SiO2@Gd(OH)CO3:Yb3+, Ho3+和SiO2@Gd2O3:Yb3+, Ho3+的XRD图谱;(b) SiO2@Gd2O3:Yb3+, Ln3+ (Ln=Er, Tm, Ho)的XRD图谱

    Figure  1.  (a) XRD patterns of SiO2, SiO2@Gd(OH)CO3:Yb3+, Ho3+ and SiO2@Gd2O3:Yb3+, Ho3+; (b) XRD patterns of SiO2@Gd2O3:Yb3+, Ln3+ (Ln=Er, Tm, Ho)

    图  2  SiO2 (a)、SiO2@Gd(OH)CO3:10%Yb3+, 1%Ho3+ (b)、SiO2@Gd2O3:10%Yb3+, 1%Ho3+ (c)、SiO2@Gd2O3:10%Yb3+, 1%Tm3+ (d)、SiO2@Gd2O3:10%Yb3+, 1%Er3+ (e) 的SEM图像;SiO2@Gd2O3:10%Yb3+, 1%Ho3+的尺寸分布图 (f)

    Figure  2.  SEM images of SiO2 (a), SiO2@Gd(OH)CO3:10%Yb3+, 1%Ho3+ (b), SiO2@Gd2O3:10%Yb3+, 1%Ho3+ (c), SiO2@Gd2O3:10%Yb3+, 1%Tm3+ (d), SiO2@Gd2O3:10%Yb3+, 1%Er3+ (e); Size distribution of SiO2@Gd2O3:10%Yb3+, 1%Ho3+ (f)

    图  3  (a) SiO2@Gd2O3:10%Yb3+, 1%Ho3+核壳微球的EDS图谱; (b) Si、O、Gd、Yb和Ho元素分布图

    Figure  3.  (a) EDS spectra of SiO2@Gd2O3:10%Yb3+, 1%Ho3+ core-shell microspheres; (b) Elemental mappings of Si, O, Gd, Yb, Ho

    图  4  SiO2、Gd2O3:Yb3+, Ho3+和SiO2@Gd2O3:Yb3+, Ho3+核壳微球的FTIR图谱

    Figure  4.  FTIR spectra of SiO2, Gd2O3:Yb3+, Ho3+ and SiO2@Gd2O3:Yb3+, Ho3+ core-shell microspheres

    图  5  SiO2@Gd2O3:Yb3+, Ln3+核壳微球的形成示意图

    Figure  5.  Schematic diagram of the formation process of SiO2@Gd2O3:Yb3+, Ln3+ core-shell microspheres

    TEOS—Tetraethyl orthosilicate

    图  6  SiO2@Gd2O3:Yb3+, Er3+ (a)、SiO2@Gd2O3:Yb3+, Tm3+ (b)、SiO2@Gd2O3:Yb3+, Ho3+ (c) 核壳微球的发射光谱

    Figure  6.  Emission spectra of SiO2@Gd2O3:Yb3+, Er3+ (a), SiO2@Gd2O3:Yb3+, Tm3+ (b), SiO2@Gd2O3:Yb3+, Ho3+ (c) core-shell microspheres

    图  7  SiO2@Gd2O3:Yb3+, Er3+ (a)、SiO2@Gd2O3:Yb3+, Tm3+ (b)、SiO2@Gd2O3:Yb3+, Ho3+ (c) 的相对上转换发射强度(IUC)与激发光功率(P)关系曲线拟合图

    Figure  7.  Fitting diagram of the relative upconversion emission intensity (IUC) on excitation power (P) in SiO2@Gd2O3:Yb3+, Er3+ (a), SiO2@Gd2O3:Yb3+, Tm3+ (b), SiO2@Gd2O3:Yb3+, Ho3+ (c) samples

    图  8  SiO2@Gd2O3:Yb3+, Ln3+ (Ln=Er, Tm, Ho)的能量传递机制图

    Figure  8.  Energy transfer scheme of SiO2@Gd2O3:Yb3+, Ln3+ (Ln=Er, Tm, Ho)

    图  9  SiO2@Gd2O3:Yb3+, Er3+和Gd2O3:Yb3+, Er3+样品的发射光谱对比(内插图:Gd2O3:Yb3+, Er3+的SEM图像)

    Figure  9.  Emission spectra comparison of SiO2@Gd2O3:Yb3+, Er3+ and Gd2O3:Yb3+, Er3+ samples (Inset: SEM image of Gd2O3:Yb3+, Er3+)

    图  10  980 nm激发下SiO2@Gd2O3:10%Yb3+, 1%Er3+ (a)、SiO2@Gd2O3:10%Yb3+, 1%Tm3+ (b)、SiO2@Gd2O3:10%Yb3+, 1%Ho3+ (c)的色度图(内插图:发光照片及色坐标)

    Figure  10.  Chromaticity diagram of SiO2@Gd2O3:10%Yb3+, 1%Er3+ (a), SiO2@Gd2O3:10%Yb3+, 1%Tm3+ (b) , SiO2@Gd2O3:10%Yb3+, 1%Ho3+ (c) under 980 nm excitation (Inset: Luminescent photographs and color coordinates)

  • [1] XU M, GE W, ZHANG X, et al. Bi-functional NaBiF4:Er3+, Tm3+ nanoparticles for optical thermometry and anti-counterfeiting applications[J]. Optics & Laser Technology,2022,145:107529.
    [2] ZHOU Y, CHENG Y, HUANG Q, et al. Abnormal thermal-enhanced upconversion luminescence for the lanthanide-doped phosphors: Proposed mechanisms and potential applications[J]. Journal of Materials Chemistry C,2021,9(7):2220-2230. doi: 10.1039/D0TC05759B
    [3] YAMINI S, GUNASEELAN M, GANGADHARAN A, et al. Upconversion, MRI imaging and optical trapping studies of silver nanoparticle decorated multifunctional NaGdF4:Yb, Er nanocomposite[J]. Nanotechnology,2022,33(8):085202. doi: 10.1088/1361-6528/ac37e4
    [4] WANG K, WU H, PAN G H, et al. Enhanced upconversion luminescence and optical thermometry in Er3+/Yb3+ heavily doped ZrO2 by stabilizing in the monoclinic phase[J]. Materials Chemistry Frontiers,2021,5(13):5142-5149. doi: 10.1039/D1QM00440A
    [5] 栾丹, 刘桂霞, 王进贤, 等. Ag-SiO2-CeF3:Tb3+复合纳米粒子的制备与发光性质[J]. 复合材料学报, 2014, 31(2):402-407.

    LUAN Dan, LIU Guixia, WANG Jinxian, et al. Preparation and luminescent properties of Ag-SiO2-CeF3:Tb3+ composite nanoparticles[J]. Acta Materiae Compositae Sinica,2014,31(2):402-407(in Chinese).
    [6] TATIANA A P, TATIANA Y P, NATALIA V K, et al. Synthesis, crystal structure, and liquid exfoliation of layered lanthanide sulfides KLn2CuS6 (Ln=La, Ce, Pr, Nd, Sm)[J]. Inorganic Chemistry,2018,57(21):13594-13605. doi: 10.1021/acs.inorgchem.8b02213
    [7] HAZARIKA S, SUCHISMITABEHERA P, MOHANTA D, et al. Magnetocaloric effect of Gd2O3 nanorods with 5% Eu-substitution[J]. Applied Surface Science,2019,491:779-783. doi: 10.1016/j.apsusc.2019.05.266
    [8] MADAN M U, SHWETABH K, SACHIN K, et al. Intense blue upconversion emission in Tm3+/Yb3+ codoped Gd2O3 phosphor[J]. Materials Today: Proceedings,2021,46(16):6429-6432.
    [9] ZHENG W, SUN B, LI Y, et al. Low power high purity red upconversion emission and multiple temperature sensing behaviors in Yb3+, Er3+ codoped Gd2O3 porous nanorods[J]. ACS Sustainable Chemistry & Engineering,2020,8(25):9578-9588.
    [10] YANG H, LI X, ZHANG R, et al. Preparation and properties of Nd3+ doped Gd2O3 near-infrared phosphor[J]. Ceramics International,2021,47(6):8510-8517. doi: 10.1016/j.ceramint.2020.11.218
    [11] WANG H, LIU Y B, KONG L W. Synthesis and characterization of monodisperse spherical SiO2@Y2O3:Tb3+ particles with core-shell structure[J]. Advanced Materials Research,2014,997:317-320. doi: 10.4028/www.scientific.net/AMR.997.317
    [12] SYED M H, YOSHITAKA K. Synthesis and characterization of sub-micrometer SiO2@NaYF4:Yb/Er beads and NaYF4:Yb/Er capsules for biomedical applications[J]. Electrochimica Acta,2015,183:160-164. doi: 10.1016/j.electacta.2015.04.051
    [13] 陈杰, 姜海峰, 高忆欣, 等. SiO2@Gd2O3:Tb3+核壳微球的可控合成及发光性能研究[J]. 人工晶体学报, 2020, 49(7):1201-1207. doi: 10.3969/j.issn.1000-985X.2020.07.009

    CHEN Jie, JIANG Haifeng, GAO Yixin, et al. Controllable synthesis and luminescent properties of SiO2@Gd2O3:Tb3+ core-shell microspheres[J]. Journal of Synthetic Crystals,2020,49(7):1201-1207(in Chinese). doi: 10.3969/j.issn.1000-985X.2020.07.009
    [14] WANG H. Synthesis and photoluminescence properties of monodisperse spherical SiO2@Lu2O3:Eu3+ particles with core-shell structure[J]. Advanced Materials Research,2014,1004:398-392.
    [15] 李国超, 戴洁, 吕蒙, 等. SiO2@Yb2O3:Eu3+核壳纳米粒子的合成及发光性能研究[J]. 青岛科技大学学报(自然科学版), 2016, 37(3):270-274.

    LI Guochao, DAI Jie, LV Meng, et al. Synthesis of SiO2@Yb2O3:Eu3+ core-shell structured particles and its luminescence properties[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition),2016,37(3):270-274(in Chinese).
    [16] CHEN J, GAO Y, JIANG H, et al. Multicolor tunable luminescence and energy transfer of core-shell structured SiO2@Gd2O3 microspheres co-activated with Dy3+/Eu3+ under single UV excitation[J]. Dalton Transactions,2020,49:7397. doi: 10.1039/D0DT00735H
    [17] WERNER S, ARTHUR F, ERNST B. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science,1968,26(1):62-69. doi: 10.1016/0021-9797(68)90272-5
    [18] 纪跃成, 李晓雷, 于慧君, 等. Al2O3-SiO2复合气凝胶的制备及改性剂对其结构与隔热性能的影响[J]. 复合材料学报, 2020, 37(3):635-641.

    JI Yuecheng, LI Xiaolei, YU Huijun, et al. Preparation of Al2O3-SiO2 composite aerogel and the influence of modifier on its structure and thermal insulation properties[J]. Acta Materiae Compositae Sinica,2020,37(3):635-641(in Chinese).
    [19] NARESH G, BORAH J P, BORGOHAIN C, et al. Synthesis, characterization and effect of dopant on magnetic hyperthermic efficacy of Gd2O3 nanoparticles[J]. Materials Research Express,2021,8:115014. doi: 10.1088/2053-1591/ac3b14
    [20] LIU G, HONG G, SUN D. Synthesis and characterization of SiO2/Gd2O3:Eu core-shell luminescent materials[J]. Journal of Colloid and Interface Science,2004,278:133-138. doi: 10.1016/j.jcis.2004.05.013
    [21] GONG J, MENG F, YANG X, et al. Controlled hydrothermal synthesis of triangular CeO2 nanosheets and their formation mechanism and optical properties[J]. Journal of Alloys & Compounds,2016,689:606-616.
    [22] 梅燕, 韩业斌, 聂祚仁. 用尿素作沉淀剂制备不同CeO2前驱体[J]. 化工学报, 2006, 57(9):2241-2244. doi: 10.3321/j.issn:0438-1157.2006.09.044

    MEI Yan, HAN Yebin, NIE Zuoren. Preparation of different CeO2 precipitator urea[J]. Journal of Chemical Industry and Engineering,2006,57(9):2241-2244(in Chinese). doi: 10.3321/j.issn:0438-1157.2006.09.044
    [23] LIU H, LIU M, WANG K, et al. Efficient upconversion emission and high-sensitivity thermometry of BaIn2O4:Yb3+/Tm3+/RE3+ (RE=Er3+, Ho3+) phosphor[J]. Dalton Transactions,2021,50:12107-12117. doi: 10.1039/D1DT01854J
    [24] ZHAO X, SUO H, ZHANG Z, et al. Spectral pure RGB up-conversion emissions in self-assembled Gd2O3:Yb3+, Er3+/Ho3+/Tm3+ 3D hierarchical architectures[J]. Ceramics International,2017,44(3):2911-2918.
    [25] TAN C, MA B, JIE Z, et al. Pure red upconversion photoluminescence and paramagnetic properties of Gd2O3:Yb3+, Er3+ nanotubes prepared via a facile hydrothermal process[J]. Materials Letters,2012,73:147-149. doi: 10.1016/j.matlet.2012.01.043
    [26] YANG L, SHI G. Luminescence properties of Gd2O3:Er/Yb nanowires[J]. Hans Journal of Nanotechnology,2017,7(2):40-46. doi: 10.12677/NAT.2017.72005
    [27] HUANG X. Synthesis, multicolour tuning, and emission enhancement of ultrasmall LaF3:Yb3+/Ln3+ (Ln=Er, Tm, and Ho) upconversion nanoparticles[J]. Journal of Materials Science,2016,51:3490-3499. doi: 10.1007/s10853-015-9667-8
    [28] YU Y, LI Y. Enhanced ultraviolet upconversion emission in Ho3+/Yb3+-codoped NaYF4 microcrystals induced by tridoping with Gd3+ ions[J]. Journal of Luminescence,2022,243:118619. doi: 10.1016/j.jlumin.2021.118619
    [29] LIU S, LIU S, HONG M, et al. Tunable multicolor and bright white upconversion luminescence in Er3+/Tm3+/Yb3+ tri-doped SrLu2O4 phosphors[J]. Journal of Materials Science,2018,53:14469-14484. doi: 10.1007/s10853-018-2632-6
    [30] SANG H J, YUWARAJ K K, SEUNG H K, et al. Microstructure investigation and multicolor upconversion in Yb3+/Ln3+ (Ln=Er/Tm/Ho) ions doped α-Sialon[J]. Progress in Natural Science: Materials International,2019,29(5):549-555. doi: 10.1016/j.pnsc.2019.08.013
    [31] LIU Z, CHEN D. Color tunable upconversion luminescence and optical thermometry properties of mixed Gd2O3: Yb3+/Ho3+/Er3+ nanoparticles prepared via laser ablation in liquid[J]. Journal of Materials Science: Materials in Electronics,2020,31:9321-9327. doi: 10.1007/s10854-020-03471-y
  • 加载中
图(10)
计量
  • 文章访问数:  688
  • HTML全文浏览量:  379
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-25
  • 修回日期:  2022-08-29
  • 录用日期:  2022-09-10
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回