留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米二氧化钛的制备、改性及其在聚合物基复合材料中的应用研究进展

周毛毛 蒋阳 谢于辉 谢德龙 梅毅

周毛毛, 蒋阳, 谢于辉, 等. 纳米二氧化钛的制备、改性及其在聚合物基复合材料中的应用研究进展[J]. 复合材料学报, 2022, 39(5): 2089-2105. doi: 10.13801/j.cnki.fhclxb.20211106.002
引用本文: 周毛毛, 蒋阳, 谢于辉, 等. 纳米二氧化钛的制备、改性及其在聚合物基复合材料中的应用研究进展[J]. 复合材料学报, 2022, 39(5): 2089-2105. doi: 10.13801/j.cnki.fhclxb.20211106.002
ZHOU Maomao, JIANG Yang, XIE Yuhui, et al. Preparation and modification of nano-TiO2 and its application in polymer matrix composites research progress[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2089-2105. doi: 10.13801/j.cnki.fhclxb.20211106.002
Citation: ZHOU Maomao, JIANG Yang, XIE Yuhui, et al. Preparation and modification of nano-TiO2 and its application in polymer matrix composites research progress[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2089-2105. doi: 10.13801/j.cnki.fhclxb.20211106.002

纳米二氧化钛的制备、改性及其在聚合物基复合材料中的应用研究进展

doi: 10.13801/j.cnki.fhclxb.20211106.002
基金项目: 云南省基础研究计划青年项目 (202101AU070012);云南省教育厅科学研究基金项目 (2021J0050)
详细信息
    通讯作者:

    谢于辉,博士,教授,硕士生导师,研究方向为金属腐蚀防护和有机-无机纳米复合材料 E-mail: yuhuixie@kust.edu.cn

    谢德龙,博士,教授,博士生导师,研究方向为高分子阻燃和涂料应用 E-mail: cedlxie@kust.edu.cn

  • 中图分类号: TB332

Preparation and modification of nano-TiO2 and its application in polymer matrix composites research progress

  • 摘要: 基于纳米二氧化钛 (TiO2) 作为添加剂制备的复合材料具有优异的耐温性、抗老化性等,而且由于其特殊的光催化活性,在通过吸收紫外光能量后具有较强的抗菌杀菌能力,因此在涂料、化妆品和医学等领域具有广泛的应用。然而,受纳米尺寸效应影响,纳米TiO2在聚合物基体中存在易团聚、难分散的缺点,使其应用受到限制。因此,需要通过多种表面改性方法调控纳米TiO2的表面性质,增强其与聚合物基体相容性。本论文首先详细阐述了纳米TiO2的制备、表面改性方法及机制,并综述了近期纳米TiO2改性聚合物基复合材料方面的研究进展。最后,讨论了纳米TiO2聚合物复合材料研究中存在的主要问题,并展望了其未来的发展方向。

     

  • 图  1  ((a)~(e)) 乙醇体积占比为0.1、0.3、0.5、0.7、0.85时制备纳米TiO2粒径为100、65、50、40、30 nm的TEM图像; (f) 50 nm TiO2的低放大TEM图像; ((g), (h)) 50 nm和 65 nm TiO2选定区域电子衍射 (SAED) 图像[45]

    Figure  1.  ((a)-(e)) TEM images of ethanol volume ratio of 0.1, 0.3, 0.5, 0.7, 0.85 were prepared with 100, 65, 50, 40, 30 nm particle size; (f) Low magnification TEM images of 50 nm TiO2; ((g), (h)) Electron diffraction patterns of selected regions (SAED) of 50 nm TiO2 and 65 nm TiO2[45]

    图  2  含有不同颗粒样品的消光光谱 (a)、反射光谱 (b) 和吸收光谱 (c);(d) 测量人造皮肤表面温度装置图;模拟阳光照射300 s后,人造皮肤达到最高平衡温度 (e) 和未进行任何处理/使用含有TiO2@Al(OH)3胶体和混合空心粒子的化妆品配方后人造皮肤外观 (f)[54]

    Figure  2.  Extinction (a), reflectance (b) and absorption spectra of the cosmetic formulations containing various particles (c); (d) Diagram of device for measuring surface temperature of artificial skin; Maximum equilibrium temperatures of the artificial skin reached after 300 s illumination of the simulated sunlight (e) and artificial skin appearances under no treatment, and after applying the cosmetic formulations containing TiO2@Al(OH)3 colloids and hybrid hollow particles (f)[54]

    AM 1.5 G—Global spectrum; T—Temperature; Tmax—Maximum equilibrium temperatures of the artificial skin reached after 300 s illumination of the simulated sunlight

    图  3  样品改性前后在紫外光((a), (c))和可见光((b), (d))照射下降解亚甲基蓝的反应活性图[56]

    Figure  3.  Reaction activity of powder samples under UV ((a), (c)) and visible light ((b), (d)) irradiation grafted film for methylene blue degradation[56]

    PMMA—Poly(methyl methacrylate); P25—Average particle size is 25 nm; c0—Concentration of methylene blue at initial time; c—Concentration of methylene blue at t time

    图  4  未改性TiO2 (a) 以及四乙氧基硅烷(TEOS) (b)、甲基三乙氧基硅烷(MTES) (c) 和TEOS-MTES (d) 改性TiO2表面水滴接触角[20]

    Figure  4.  Contact angles of water droplets on the surface of unmodified TiO2 (a) and modified TiO2 with tetraethyl orthosilicate (TEOS) (b), methyltriethoxysilane (MTES) (c), and TEOS-MTES (d)[20]

    图  5  (a) 接触角 (CA) 与UV辐照时间的关系;(b)复合材料表面CA随加热时间的变化;(c)复合材料表面在紫外线照射和加热下可逆的超疏水-超亲水性切换[69]

    Figure  5.  (a) Relationship between contact angle (CA) and UV irradiation time; (b) Variations in the CA of the composite surface with heating time; (c) Reversible superhydrophobicity-superhydrophilicity switching of the composite surface under UV irradiation and heating[69]

    图  6  多巴胺聚合和硅烷接枝法改性纳米TiO2机制图[70]

    Figure  6.  Scheme of the modification of TiO2 nanoparticles with dopamine polymerization and silane grafting[70]

    PDA—Polydopamine; KH-570—γ-Methacryloxypropyl trimethoxy silane

    图  7  硅烷偶联剂改性纳米TiO2机制图[37]

    Figure  7.  Functionalization of TiO2 by the silane coupling agent[37]

    图  8  纯纳米TiO2和聚合物改性纳米TiO2在聚合物中的分散机制图[74]

    Figure  8.  Schematic drawing of the possible structure of pure TiO2 nanoparticles and grafted TiO2 nanoparticles dispersed in polymer matrix[74]

    图  9  丙烯酸 (AA) 浓度为20% (a)、30% (b) 和40% (c) 时二氧化钛/聚(偏氟乙烯-丙烯酸) (TiO2/PVDF-PAA) 的SEM图像[75]

    Figure  9.  SEM images of titanium dioxide/poly(vinylidene fluoride- acrylic acid) (TiO2/PVDF-PAA) at acrylic acid (AA) concentration of 20% (a), 30% (b) and 40% (c)[75]

    图  10  14天后在平整(F)和鲨鱼皮纹(P) TiO2/PMMA生物膜表面形成的大肠杆菌SEM图像[76]

    Figure  10.  SEM images of E. coli biofilm formation after 14 days on flat (F) and shark-skin patterned (P) TiO2/PMMA surfaces[76]

    PMT0, PMT8—TiO2/PMMA(0wt%) and TiO2/PMMA(8wt%)

    图  11  微波辅助溶剂蒸发制备纳米TiO2/PVDF复合膜示意图[79]

    Figure  11.  Schematic of TiO2/PVDF nanocomposite film fabrication with microwave-assisted solvent evaporation process[79]

    图  12  分散在聚合物基质中的纳米粒子簇的TEM图像[80]

    Figure  12.  TEM images of nanoparticle clusters dispersed in the polymeric matrix[80]

    图  13  复合材料的扫描电镜图像和X 射线能谱图 (EDS) 分析:(a) TiO2; (b) TiO2/聚乙烯醇 (TiO2/PVA); (c) TiO2/聚乙二醇 (TiO2/PEG)[81]

    Figure  13.  SEM micrographs and X ray energy spectrum (EDS) spectra of composites:(a) TiO2; (b) TiO2/Poly(vinyl alcohol) (TiO2/PVA); (c) TiO2/Poly(ethylene glycol) (TiO2/PEG)[81]

    图  14  TiO2纳米复合膜断裂面 SEM 图像:(a) 0wt%纳米TiO2;(b) 1.5wt%纳米TiO2[43]

    Figure  14.  SEM micrographs of fracture surface of TiO2 nanocomposite films: (a) 0wt%Nano-TiO2; (b) 1.5wt%Nano-TiO2[43]

    图  15  不同聚合时间下TiO2/PMMA杂化板外观图和TEM图像[83]

    Figure  15.  Appearance and TEM image of TiO2/PMMA hybrid plate at different polymerization times[83]

    表  1  全氟化膜(Nafion-117)为基准测试膜的拉伸强度、吸水率、氧化稳定性、离子电导率和BH4–渗透性[59]

    Table  1.   Tensile strength, water uptake, oxidative stability, ionic conductivity and BH4– permeability of the prepared membranes and benchmark Nafion macromolecule (Nafion-117)[59]

    MembraneTensile
    strength/MPa
    Water
    uptake/%
    Oxidative
    stability/%
    Ionic conductivity/
    (mS·cm−1)
    BH4– permeability/(cm2·s−1)
    PVA-PEO-PVP2.7>1008113.12.10×10−5
    PVA-PEO-PVP/SPTO-1.0wt%10.6478114.46.30×10−6
    PVA-PEO-PVP/SPTO-2.5wt%12.3149915.60.41×10−6
    PVA-PEO-PVP/SPTO-5wt%17.2119816.00.12×10−6
    Nafion-11725.0159245.00.40×10−6
    Notes: PVA—Poly(vinyl alcohol); PEO—Ethylene oxide; PVP—Vinyl pyrrolidone; SPTO—Sulphated and phosphated titanium dioxide; SPTO-1.0wt%, SPTO-2.5wt%, SPTO-5wt%—Amount of SPTO added is 1wt%, 2.5wt% and 5wt%.
    下载: 导出CSV
  • [1] ALI N, SAID A, ALI F, et al. Development and characterization of functionalized titanium dioxide-reinforced sulfo-nated copolyimide (SPI/TiO2) nanocomposite membranes with improved mechanical, thermal, and electrochemical properties [J]. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30(11): 4585-4596.
    [2] MOHANAPRIYA M K, DESHMUKH K, KADLEC J, et al. Dynamic mechanical analysis and broadband electromagnetic interference shielding characteristics of poly (vinyl alcohol)-poly(4-styrenesulfonic acid)-titanium dioxide nanoparticles based tertiary nanocomposites [J]. Polymer-Plastics Technology and Materials, 2020, 59(8): 847-863.
    [3] SUN Y C, D'CUNHA J, NAGUIB H E. Microcellular structure assisted phase transformation of polyvinylidene fluoride/titanium dioxide nanocomposites [J]. Journal of Cellular Plastics, 2021, 57(4): 545-562.
    [4] SHIRDAR M R, FARAJPOUR N, SHAHBAZIAN-YASSAR R, et al. Nanocomposite materials in orthopedic applications[J]. Frontiers of Chemical Science and Engineering, 2019, 13(1): 1-13.
    [5] LI M, HONG Y, YU H, et al. A novel high solar reflective coating based on potassium silicate for track slab in high-speed railway[J]. Construction and Building Materials, 2019, 225: 900-908.
    [6] ZHOU H, SUN S, DING H. Surface organic modification of TiO2 powder and relevant characterization [J]. Advances in Materials Science and Engineering, 2017, 2017: 9562612.
    [7] HE X L, PU Y, WANG J X, et al. Surface engineering of titanium dioxide nanoparticles for silicone-based transparent hybrid films with ultrahigh refractive indexes[J]. Langmuir, 2021, 37(8): 2707-2713.
    [8] YU M Z, WU L N, MIAO J N, et al. Titanium dioxide and polypyrrole molecularly imprinted polymer nanocompo-sites based electrochemical sensor for highly selective detection of p-nonylphenol[J]. Analytica Chimica Acta, 2019, 1080: 84-94.
    [9] LIANG F, FAN Y J, KUANG S Y, et al. Layer-by-layer assembly of nanofiber/nanoparticle artificial skin for strain-insensitive UV shielding and visualized UV detection[J]. Advanced Materials Technologies, 2020, 5(4): 1900976.
    [10] JEON J P, KWEON D H, JANG B J, et al. Enhancing the photocatalytic activity of TiO2 catalysts[J]. Advanced Sustainable Systems, 2020, 4(12): 2000197.
    [11] ANDRONIC L, ENESCA A. Black TiO2 synthesis by chemical reduction methods for photocatalysis applications [J]. Frontiers in Chemistry, 2020, 8: 565489.
    [12] WU S, HU H, LIN Y, et al. Visible light photocatalytic degradation of tetracycline over TiO2[J]. Chemical Engi-neering Journal, 2020, 382: 122842.
    [13] BUGAKOVA D, SLABOV V, SERGEEVA E, et al. Comprehensive characterization of TiO2 inks and their application for inkjet printing of microstructures[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586: 124146.
    [14] WANG C L, YAN K, LUO X, et al. Preparation of polyurethane acrylate-based titanium dioxide pigment and its use in blue light-curable ink [J]. Coloration Technology, 2021, 137(4): 348-360.
    [15] POURHASHEM S, DUAN J, GUAN F, et al. New effects of TiO2 nanotube/g-C3N4 hybrids on the corrosion protection performance of epoxy coatings [J]. Journal of Molecular Liquids, 2020, 317: 114214.
    [16] GONZALEZ-CALDERON J A, PÉREZ-PÉREZ C, PÉREZ RODRÍGUEZ R Y, et al. Silanization of di-n-octyldichlorosi-lane as a route to improve the integration of titanium dio-xide in polypropylene [J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(2): 1069-1079.
    [17] RAEISI M, KAZEROUNI Y, MOHAMMADI A, et al. Superhydrophobic cotton fabrics coated by chitosan and titanium dioxide nanoparticles with enhanced antibacterial and UV-protecting properties [J]. International Journal of Biologi-cal Macromolecules, 2021, 171: 158-165.
    [18] CAO C, WANG Y, ZHENG S, et al. Poly (butylene adipate-co-terephthalate)/titanium dioxide/silver composite biofilms for food packaging application [J]. LWT, 2020, 132: 109874.
    [19] TREEKAMOL Y, SCHIEDA M, HERRMANN-GEPPERT I, et al. Optimized photoactive coatings prepared with functionalized TiO2 [J]. International Journal of Hydrogen Energy, 2019, 44(60): 31800-31807.
    [20] PURCAR V, RADITOIU V, DUMITRU A, et al. Antireflective coating based on TiO2 nanoparticles modified with coupling agents via acid-catalyzed sol-gel method [J]. Applied Surface Science, 2019, 487: 819-824.
    [21] CHEN X D, WANG Z, LIAO Z F, et al. Roles of anatase and rutile TiO2 nanoparticles in photooxidation of polyurethane [J]. Polymer Testing, 2007, 26(2): 202-208.
    [22] CHEN P Q, WEI B Z, ZHU X, et al. Fabrication and characterization of highly hydrophobic rutile TiO2-based coatings for self-cleaning [J]. Ceramics International, 2019, 45(5): 6111-6118.
    [23] CAZAN C, ENESCA A, ANDRONIC L. Synergic effect of TiO2 filler on the mechanical properties of polymer nanocomposites [J]. Polymers, 2021, 13(12): 2017.
    [24] LIU Y, YANG T, ZHANG B, et al. Structural insight in the interfacial effect in ferroelectric polymer nanocomposites [J]. Advanced Materials, 2020, 32(49): 2005431.
    [25] FENG M N, HUANG Y M, CHENG T, et al. Synergistic effect of graphene oxide and carbon nanotubes on sulfonated poly(arylene ether nitrile)-based proton conducting membranes [J]. International Journal of Hydrogen Energy, 2017, 42(12): 8224-8232.
    [26] ALI N, ALI F, SAEED S, et al. Structural characteristics and electrochemical properties of sulfonated polyimide clay-based composite fabricated by a solution casting method [J]. Journal of Materials Science: Materials in Electronics, 2019, 30(21): 19164-19172.
    [27] NGUYEN T C, NGUYEN T D, VU D T, et al. Modification of titanium dioxide nanoparticles with 3-(trimethoxysilyl)propyl methacrylate silane coupling agent [J]. Journal of Chemistry, 2020, 2020: 1381407.
    [28] VASUDEVAN S, FULLERTON-SHIREY S K. Effect of nanoparticle shape on the electrical and thermal properties of solid polymer electrolytes [J]. Journal of Physical Che-mistry C, 2019, 123(17): 10720-10726.
    [29] THOMASON J. A review of the analysis and characterisation of polymeric glass fibre sizings [J]. Polymer Testing, 2020, 85: 106421.
    [30] ZINDANI D, KUMAR K. An insight into additive manufacturing of fiber reinforced polymer composite [J]. International Journal of Lightweight Materials and Manufacture, 2019, 2(4): 267-278.
    [31] DEMIRCI S, SUNOL A K, SAHINER N. Catalytic activity of amine functionalized titanium dioxide nanoparticles in methanolysis of sodium borohydride for hydrogen generation [J]. Applied Catalysis B: Environmental, 2020, 261: 118242.
    [32] RAHIMI N, PAX R A, GRAY E M. Review of functional titanium oxides. I: TiO2 and its modifications [J]. Progress in Solid State Chemistry, 2016, 44(3): 86-105.
    [33] MARCHAND R, BROHAN L, TOURNOUX M. TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17[J]. Materials Research Bulletin, 1980, 15(8): 1129-1133.
    [34] WANG Z M, WANG K, PENG X Y, et al. Comparative study of ultraviolet light and visible light on the photo-assisted conductivity and gas sensing property of TiO2 [J]. Sensors and Actuators B-Chemical, 2017, 248: 724-732.
    [35] TAO J J, MA H P, YUAN K P, et al. Modification of 1D TiO2 nanowires with gaoxny by atomic layer deposition for TiO2@GaOxNy core-shell nanowires with enhanced photoelectrochemical performance [J]. Nanoscale, 2020, 12(13): 7159-7173.
    [36] LI N, XU Z, ZHENG S, et al. Superamphiphilic TiO2 composite surface for protein antifouling [J]. Advanced Materials, 2021, 33(25): 2003559.
    [37] WANG L, JIANG X, WANG C, et al. Titanium dioxide grafted with silane coupling agents and its use in blue light curing ink [J]. Coloration Technology, 2019, 136(1): 15-22.
    [38] RAHIMINEZHAD-SOLTANI M, SABERYAN K, SIMCHI A. New insight into reaction mechanisms of TiCl4 for the synthesis of TiO2 nanoparticles in H2O-assisted atmospheric-pressure CVS process [J]. Materials Science and Engi-neering: B, 2021, 264: 114958.
    [39] REN L, LI Y, HOU J, et al. Fabrication and cavity-size-dependent photocatalytic property of TiO2 hollow nanoparticles with tunable cavity size [J]. Materials Research Bulletin, 2020, 126: 110744.
    [40] FARHADIAN AZIZI K, BAGHERI-MOHAGHEGHI M M. The effect of solution flow rate and substrate temperature on structural and optical properties of TiO2 films deposited by spray pyrolysis technique [J]. Thin Solid Films, 2017, 621: 98-101.
    [41] ZHANG Q, LI C. High temperature stable anatase phase titanium dioxide films synthesized by mist chemical vapor deposition [J]. Nanomaterials, 2020, 10(5): 911.
    [42] RAHIMINEZHAD-SOLTANI M, SABERYAN K, SIMCHI A, et al. New approaches in lowering the gas-phase synthesis temperature of TiO2 nanoparticles by H2O-assisted atmospheric pressure cvs process [J]. Journal of Materials Research and Technology, 2019, 8(3): 3024-3035.
    [43] WANG C, SHENG X, XIE D, et al. High-performance TiO2/polyacrylate nanocomposites with enhanced thermal and excellent UV-shielding properties [J]. Progress in Organic Coatings, 2016, 101: 597-603.
    [44] KOTSOKECHAGIA T, CELLESI F, THOMAS A, et al. Prepa-ration of ligand-free TiO2 (anatase) nanoparticles through a nonaqueous process and their surface functionalization [J]. Langmuir, 2008, 24(13): 6988-6997.
    [45] SUNG S D, OJHA D P, YOU J S, et al. 50 nm Sized spherical TiO2 nanocrystals for highly efficient mesoscopic perovskite solar cells [J]. Nanoscale, 2015, 7(19): 8898-8906.
    [46] XIAO Y, WANG C, KONDAMAREDDY K K, et al. Efficient electron transport scaffold made up of submicron TiO2 spheres for high-performance hole-transport material free perovskite solar cells [J]. ACS Applied Energy Materials, 2018, 1(10): 5453-5462.
    [47] BI X, DU G, SUN D, et al. Room-temperature synthesis of yellow TiO2 nanoparticles with enhanced photocatalytic properties [J]. Applied Surface Science, 2020, 511: 145617.
    [48] KHAN S, PARK B I, HAN J S, et al. Flame synthesized Y2O3:Tb3+-Yb3+ phosphors as spectral convertors for solar cells [J]. Research on Chemical Intermediates, 2018, 44(8): 4619-4632.
    [49] KHAN S, YAIRI T. A review on the application of deep learning in system health management [J]. Mechanical Systems and Signal Processing, 2018, 107: 241-265.
    [50] AGUSTIN A R, TAMURA K. Surface modification of TiO2 nanoparticles with terephthalic acid in supercritical carbon dioxide [J]. Journal of Supercritical Fluids, 2021, 174: 9.
    [51] KONG L, LI Z C, HUANG S Q, et al. Boosting photocatalytic performance and stability of CuInS2/ZnS-TiO2 heterostructures via sol-gel processed integrate amorphous titania gel [J]. Applied Catalysis B-Environmental, 2017, 204: 403-410.
    [52] SEOK T J, LIU Y H, JUNG H J, et al. Field-effect device using quasi-two-dimensional electron gas in mass-producible atomic-layer-deposited Al2O3/TiO2 ultrathin (<10 nm) film heterostructures [J]. ACS Nano, 2018, 12(10): 10403-10409.
    [53] LIU F, LIU G. TiO2-SiO2 composite nanoparticles containing hindered amine light stabilizers encapsulated by MMA-PMPM copolymers[J]. Iranian Polymer Journal,2017,26(10):785-795. doi: 10.1007/s13726-017-0564-7
    [54] HAN N, KIM M G, KIM S W, et al. Enhanced near-infrared shielding and light scattering using surface-roughened hybrid hollow microparticles synthesized with polymer and TiO2@Al(OH)3 for cosmetic applications [J]. Particle & Particle Systems Characterization, 2018, 35(6): 1800057.
    [55] LIN Y M, JIANG Z Y, ZHU C Y, et al. The electronic structure, optical absorption and photocatalytic water splitting of (Fe plus Ni)-codoped TiO2: A DFT + U study [J]. International Journal of Hydrogen Energy, 2017, 42(8): 4966-4976.
    [56] KLAYSRI R, PREECHAWAN V, THAMMACHAI N, et al. Photocatalytic activity of nitrogen and silica doping on TiO2 nanocatalyst and grafted onto pmma film [J]. Materials Chemistry and Physics, 2018, 211: 420-427.
    [57] DHANDOLE L K, MAHADIK M A, KIM S G, et al. Boosting photocatalytic performance of inactive rutile TiO2 nano-rods under solar light irradiation: Synergistic effect of acid treatment and metal oxide co-catalysts [J]. ACS Applied Materials & Interfaces, 2017, 9(28): 23602-23613.
    [58] LI Z J, QU Y, HU K, et al. Improved photoelectrocatalytic activities of biocl with high stability for water oxidation and mo degradation by coupling RGO and modifying phosphate groups to prolong carrier lifetime [J]. Applied Catalysis B-Environmental, 2017, 203: 355-362.
    [59] GOUDA M H, GOUVEIA W, ELESSAWY N A, et al. Simple design of pva-based blend doped with SO4(PO4)-functionalised TiO2 as an effective membrane for direct borohydride fuel cells [J]. International Journal of Hydrogen Energy, 2020, 45(30): 15226-15238.
    [60] AZIZ T, ULLAH A, FAN H, et al. Recent progress in silane coupling agent with its emerging applications [J]. Journal of Polymers and the Environment, 2021, 29(11): 3427-3443.
    [61] ZHONG H, HU Y, WANG Y H, et al. TiO2/silane coupling agent composed two layesrs structure: A novel stability super-hydrophilic self-cleaning coating applied in PV panels [J]. Applied Energy. 2017, 204: 932-938.
    [62] XIE J, PAN X B, WANG M Y, et al. The role of surface modification for TiO2 nanoparticles in cancer cells [J]. Colloids and Surfaces B-Biointerfaces, 2016, 143: 148-155.
    [63] HUANG C, HUANG Z X, LV X S, et al. Surface modification of hollow glass microsphere with different coupling agents for potential applications in phenolic syntactic foams [J]. Journal of Applied Polymer Science, 2017, 134(4): 14.
    [64] SILVEIRA-HORNUNG P, ÁVILA S, APEA-BAH F B, et al. Sustainable use of ilex paraguariensis waste in improving biodegradable corn starch films’ mechanical, thermal and bioactive properties [J]. Journal of Polymers and the Envi-ronment, 2020, 28(6): 1696-1709.
    [65] KHATTAK N S, AHMAD A S, SHAH L A, et al. Thermal and rheological study of nanocomposites, reinforced with Bi-phase ceramic nanoparticles [J]. Zeitschrift Für Physikalische Chemie, 2019, 233(9): 1233-1246.
    [66] AHMED N, FAN H, DUBOIS P, et al. Nano-engineering and micromolecular science of polysilsesquioxane materials and their emerging applications [J]. Journal of Materials Chemistry A, 2019, 7(38): 21577-21604.
    [67] ZHENG W, TANG C, XIE J, et al. Micro-scale effects of nano-SiO2 modification with silane coupling agents on the cellulose/nano-SiO2 interface [J]. Nanotechnology, 2019, 30(44): 445701.
    [68] NAKAMURA T, TABUCHI H, HIRAI T, et al. Effects of silane coupling agent hydrophobicity and loading method on water absorption and mechanical strength of silica particle-filled epoxy resin [J]. Journal of Applied Polymer Science, 2020, 137(17): 48615.
    [69] QING Y Q, YANG C N, YU N N, et al. Superhydrophobic TiO2/polyvinylidene fluoride composite surface with reversible wettability switching and corrosion resistance [J]. Chemical Engineering Journal, 2016, 290: 37-44.
    [70] YANG D, RUAN M N, HUANG S, et al. Improved electromechanical properties of nbr dielectric composites by poly(dopamine) and silane surface functionalized TiO2 nanoparticles [J]. Journal of Materials Chemistry C, 2016, 4(33): 7724-7734.
    [71] SHI Y, ZHANG Q, LIU Y, et al. Preparation of amphiphilic TiO2 janus particles with highly enhanced photocatalytic activity [J]. Chinese Journal of Catalysis, 2019, 40(5): 786-794.
    [72] ROY K, SIKDAR D, MANDAL S K, et al. Surface modification of nano titanium dioxide (TiO2) by cationic surfac-tants and investigation of its effect on the properties of natural rubber (NR) nanocomposites [J]. Rubber Chemistry and Technology, 2020, 93(2): 346-359.
    [73] BEHNAJADY M A, ESKANDARLOO H, MODIRSHAHLA N, et al. Investigation of the effect of sol-gel synthesis variables on structural and photocatalytic properties of TiO2 nanoparticles [J]. Desalination, 2011, 278(1/3): 10-17.
    [74] RONG M Z, ZHANG M Q, ZHENG Y X, et al. Structure-pro-perty relationships of irradiation grafted nano-inorganic particle filled polypro-pylene composites [J]. Polymer, 2001, 42(1): 167-183.
    [75] TRAN M L, FU C C, CHIANG L Y, et al. Immobilization of TiO2 and TiO2-GO hybrids onto the surface of acrylic acid-grafted polymeric membranes for pollutant removal: Analysis of photocatalytic activity [J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104422.
    [76] CHIEN H W, CHEN X Y, TSAI W P. Poly(methyl methacrylate)/titanium dioxide (PMMA/TiO2) nanocomposite with shark-skin structure for preventing biofilm formation[J]. Materials Letters,2021,285:129098.
    [77] LIU Y, GAO J, YAO R, et al. Enhanced energy storage performance in a PVDF/PMMA/TiO2 blending nanodielectric material[J]. Materials Chemistry and Physics,2020,250:123155.
    [78] MAGISETTY R, SHUKLA A, KANDASUBRAMANIAN B. Magnetodielectric microwave radiation absorbent materials and their polymer composites [J]. Journal of Electronic Materials, 2018, 47(11): 6335-6365.
    [79] HONG H, SONG S A, KIM S S. Phase transformation of poly (vinylidene fluoride)/TiO2 nanocomposite film prepared by microwave-assisted solvent evaporation: An experimental and molecular dynamics study[J]. Composites Science and Technology,2020,199:108375. doi: 10.1016/j.compscitech.2020.108375
    [80] COLOMBO A, TASSONE F, SANTOLINI F, et al. Nanoparticle-doped large area PMMA plates with controlled optical diffusion[J]. Journal of Materials Chemistry C,2013,1(16):2927-2934. doi: 10.1039/c3tc00767g
    [81] TEKIN D, BIRHAN D, KIZILTAS H. Thermal, photocatalytic, and antibacterial properties of calcinated nano-TiO2/polymer composites [J]. Materials Chemistry and Physics, 2020, 251: 123067.
    [82] LI S, CHEN G, QIANG S, et al. Synthesis and evaluation of highly dispersible and efficient photocatalytic TiO2/poly lactic acid nanocomposite films via sol-gel and casting processes[J]. International Journal of Food Microbiology,2020,331:108763. doi: 10.1016/j.ijfoodmicro.2020.108763
    [83] MAEDA S, FUJITA M, IDOTA N, et al. Preparation of transparent bulk TiO2/PMMA hybrids with improved refractive indices via an in situ polymerization process using TiO2 nanoparticles bearing pmma chains grown by surface-initiated atom transfer radical polymerization [J]. ACS Applied Materials & Interfaces, 2016, 8(50): 34762-34769.
    [84] DING T, WU J, CHEN Z, et al. Synthesis of hierarchically mesoporous TiO2 spheres via a emulsion polymerization route for superior lithium-ion batteries[J]. Journal of Electroanalytical Chemistry,2018,818:1-9. doi: 10.1016/j.jelechem.2018.04.023
    [85] DONG C C, JI J H, YANG Z, et al. Research progress of photocatalysis based on highly dispersed titanium in mesopo-rous SiO2 [J]. Chinese Chemical Letters, 2019, 30(4): 853-862.
    [86] LIKODIMOS V. Photonic crystal-assisted visible light acti-vated TiO2 photocatalysis [J]. Applied Catalysis B-Environmental, 2018, 230: 269-303.
    [87] 潘素素, 郑智阳, 惠俊杰, 等. 纳米二氧化钛-聚合物复合材料去除无机/有机污染物的研究进展 [J]. 湿法冶金, 2019, 38(1): 1-6.

    PAN Susu, ZHENG Zhiyang, HUI Junjie, et al. Research progress in the removal of inorganic/organic pollutants by nano-TiO2/polymer composites[J]. Hydrometallurgy, 2019, 38(1): 1-6(in Chinese).
    [88] KAMAL T, ANWAR Y, KHAN S B, et al. Dye adsorption and bactericidal properties of TiO2/chitosan coating layer [J]. Carbohydrate Polymers, 2016, 148: 153-160.
    [89] ZHANG J, CAO S, XU S, et al. Study on stability of poly(3-hexylthiophene)/titanium dioxide composites as a visible light photocatalyst [J]. Applied Surface Science, 2015, 349: 650-656.
    [90] SHI Y, YU Z, LI Z, et al. In-situ synthesis of TiO2@GO nanosheets for polymers degradation in a natural environment[J]. Polymers,2021,13(13):2158. doi: 10.3390/polym13132158
    [91] NEVES J C, MOHALLEM N D S, VIANA M M. Polydimethylsiloxanes-modified TiO2 coatings: The role of structural, morphological and optical characteristics in a self-cleaning surface [J]. Ceramics International, 2020, 46(8): 11606-11616.
    [92] XI Y, QI Y, MAO Z, et al. Surface hydrophobic modification of TiO2 and its application to preparing PMMA/TiO2 composite cool material with improved hydrophobicity and anti-icing property [J]. Construction and Building Materials, 2021, 266: 120916.
    [93] HONG W, WANG R, LI N, et al. Facile preparation and excellent ultraviolet shielding application of polyurethane-TiO2 composite microcapsules[J]. Particle & Particle Systems Characterization,2021,38(1):2000265.
    [94] MOHR L C, CAPELEZZO A P, BARETTA C R D M, et al. Titanium dioxide nanoparticles applied as ultraviolet radiation blocker in the polylactic acid bidegradable polymer [J]. Polymer Testing, 2019, 77: 105867.
    [95] ZHANG Z, WANG Y, LI T, et al. High-performance polylac-tic acid materials enabled by TiO2-polydopamine hybrid nanoparticles [J]. Industrial & Engineering Chemistry Research, 2021, 60(10): 3999-4008.
    [96] MO X, WANG Y, XIAO Q, et al. Conjugated polymer sensi-tized hyperbranched titanium dioxide based photoelectrochemical biosensor for detecting AFP in serum[J]. Surfaces and Interfaces,2021,24:101103. doi: 10.1016/j.surfin.2021.101103
    [97] GHOSAL K, AGATEMOR C, SPITALSKY Z, et al. Electrospinning tissue engineering and wound dressing scaffolds from polymer-titanium dioxide nanocomposites [J]. Chemical Engineering Journal, 2019, 358: 1262-1278.
    [98] XIAN P, CHEN Y, GAO S, et al. Polydopamine (PDA) mediated nanogranular-structured titanium dioxide (TiO2) coating on polyetheretherketone (PEEK) for oral and maxillofacial implants application [J]. Surface and Coatings Technology, 2020, 401: 126282.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  2171
  • HTML全文浏览量:  652
  • PDF下载量:  205
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-08
  • 修回日期:  2021-10-27
  • 录用日期:  2021-10-31
  • 网络出版日期:  2021-11-08
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回