留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

荷载-温度耦合影响下混杂纤维/混凝土三轴压缩渗透行为

薛维培 范红君 高聪 张瀚文 申磊

薛维培, 范红君, 高聪, 等. 荷载-温度耦合影响下混杂纤维/混凝土三轴压缩渗透行为[J]. 复合材料学报, 2022, 39(11): 5548-5556. doi: 10.13801/j.cnki.fhclxb.20211119.001
引用本文: 薛维培, 范红君, 高聪, 等. 荷载-温度耦合影响下混杂纤维/混凝土三轴压缩渗透行为[J]. 复合材料学报, 2022, 39(11): 5548-5556. doi: 10.13801/j.cnki.fhclxb.20211119.001
XUE Weipei, FAN Hongjun, GAO Cong, et al. Triaxial compression permeability behavior of hybrid fiber reinforced concrete under load-temperature coupling[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5548-5556. doi: 10.13801/j.cnki.fhclxb.20211119.001
Citation: XUE Weipei, FAN Hongjun, GAO Cong, et al. Triaxial compression permeability behavior of hybrid fiber reinforced concrete under load-temperature coupling[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5548-5556. doi: 10.13801/j.cnki.fhclxb.20211119.001

荷载-温度耦合影响下混杂纤维/混凝土三轴压缩渗透行为

doi: 10.13801/j.cnki.fhclxb.20211119.001
基金项目: 安徽省自然科学基金项目(1908085QE185;2208085ME146);安徽省住房城乡建设科学技术计划项目(2021-YF58);深部煤矿采动响应与灾害防控国家重点实验室自主课题(SKLMRDPC20ZZ05 );安徽理工大学环境友好材料与职业健康研究院研发专项基金(ALW2021YF14);安徽省大学生创新创业训练计划项目(S202110361046);安徽理工大学研究生创新基金(2020CX2032)
详细信息
    通讯作者:

    薛维培,博士,副教授,硕士生导师,研究方向为混杂纤维/混凝土水力耦合特性及耐久性 E-mail: xueweipei@163.com

  • 中图分类号: TB528

Triaxial compression permeability behavior of hybrid fiber reinforced concrete under load-temperature coupling

  • 摘要: 为了研究荷载-温度耦合作用对仿钢纤维(Imitation steel fiber,ISF)和聚乙烯醇纤维(Polyvinyl alcohol fiber,PVAF)混掺的混凝土三轴压缩渗透性能影响及ISF-PVAF混杂纤维/混凝土渗透率演化与应力状态的关系,开展固定围压和渗透水压条件下的三轴压缩渗透试验,获得应力-变形曲线、峰值强度及各应力点处渗透率,结合SEM从内部微观结构变化角度揭示宏观性能改变机制。结果表明:荷载与温度耦合作用使混杂纤维/混凝土孔隙率呈现出先略微降低后大幅上升的趋势,最大增幅达到80.48%,不利于三轴压缩渗透强度的发展;初始渗透率增加尤其是受温度因素影响增幅更加明显,200℃和300℃作用时初始渗透率相对于100℃分别提高了144.60%、291.55%。根据应力-变形曲线特征,三轴压缩渗透过程可分为初始压密阶段、弹性阶段、裂纹发展阶段、软化阶段,应力状态的改变使混杂纤维/混凝土内部微裂纹及残余纤维通道随之变化,直接影响到孔隙水渗流路径,相应地渗透率在各应力阶段表现出大幅下降、相对平稳、急速上升、增幅最大等特征。

     

  • 图  1  仿钢纤维(ISF)和聚乙烯醇纤维(PVAF)表观形貌

    Figure  1.  Morphologies of imitation steel fiber (ISF) and polyvinyl alcohol fiber (PVAF)

    图  2  荷载-温度耦合加载装置

    Figure  2.  Load-temperature coupling loading device

    图  3  试件安装与受力示意图

    p—Seepage pressure; σ3—Confining pressure

    Figure  3.  Schematic diagram of specimen installation and load

    图  4  荷载-温度耦合作用前后ISF-PVAF/混凝土孔隙率

    Figure  4.  Porosity of ISF-PVAF/concrete before and after load-temperature coupling

    图  5  ISF-PVAF/混凝土三轴压缩渗透强度

    Figure  5.  Triaxial compressive permeability peak strength of ISF-PVAF/concrete

    图  6  ISF-PVAF/混凝土三轴压缩渗透过程应力-变形-渗透率曲线

    Figure  6.  Stress-deformation-permeability curves of ISF-PVAF/concrete during triaxial compression

    图  7  不同组别ISF-PVAF/混凝土微观结构

    Figure  7.  Microstructures of different groups of ISF-PVAF/concrete

    表  1  ISF和PVAF基本性能参数

    Table  1.   Basic property parameters of ISF and PVAF

    Type of fiberTensile strength/MPaElastic modulus/GPaDiameter/μmSpecific gravity/(g·cm−3)Melting point/℃
    ISF≥38051200±200.91170
    PVAF≥15003915±31.30225
    下载: 导出CSV

    表  2  ISF-PVAF/混凝土配合比

    Table  2.   Mix proportion of ISF-PVAF/concrete kg·m−3

    CementSandStoneAdmixtureWaterISFPVAF
    380848.121153.88401782.731.56
    下载: 导出CSV

    表  3  ISF-PVAF/混凝土试件编号

    Table  3.   Specimen numbers of ISF-PVAF/concrete

    Specimen numberPreloading level/%Temperature/℃
    F50T10050100
    F50T20050200
    F50T30050300
    F70T10070100
    F70T20070200
    F70T30070300
    下载: 导出CSV
  • [1] 杨娟, 朋改非. 钢纤维类型对超高性能混凝土高温爆裂性能的影响[J]. 复合材料学报, 2018, 35(6):1599-1608.

    YANG Juan, PENG Gaifei. Influence of different types of steel fiber on explosive spalling behavior of ultra-high-performance concrete exposed to high temperature[J]. Acta Materiae Compositae Sinica,2018,35(6):1599-1608(in Chinese).
    [2] BAO H, YU M, CHI Y, et al. Performance evaluation of steel-polypropylene hybrid fiber reinforced concrete under supercritical carbonation[J]. Journal of Building Engineering,2021,43:103159.
    [3] 余江滔, 史天成, 郁颉, 等. 高性能纤维增强混凝土与筋材复合体系拉伸性能研究[J]. 同济大学学报(自然科学版), 2021, 49(6):825-833. doi: 10.11908/j.issn.0253-374x.20293

    YU Jiangtao, SHI Tiancheng, YU Jie, et al. Experimental study of tensile properties of composite system of high performance concrete and reinforcements[J]. Journal of Tongji University (Natural Science),2021,49(6):825-833(in Chinese). doi: 10.11908/j.issn.0253-374x.20293
    [4] 高丹盈, 景嘉骅, 周潇. 混杂纤维增强再生砖骨料混凝土增强机制与抗压性能计算方法[J]. 复合材料学报, 2018, 35(12): 3441-3449.

    GAO Danying, JING Jiahua, ZHOU Xiao. Reinforcing mechanism and calculation method of compressive behavior of hybrid fiber reinforced recycled brick aggre-gates concrete[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3441-3449(in Chinese).
    [5] SHI F, PHAM T M, HAO H, et al. Post-cracking behaviour of basalt and macro polypropylene hybrid fibre reinforced concrete with different compressive strengths[J]. Construction and Building Materials,2020,262:120108. doi: 10.1016/j.conbuildmat.2020.120108
    [6] 钟光淳, 周颖, 肖意. 钢-聚乙烯醇混杂纤维混凝土单轴受力应力-应变曲线研究[J]. 工程力学, 2020, 37(S1):111-120.

    ZHONG Guangchun, ZHOU Ying, XIAO Yi. Stress-strain behavior of steel-polyviny alcohol hybrid fiber reinforced concrete under axial compression and tension[J]. Engi-neering Mechanics,2020,37(S1):111-120(in Chinese).
    [7] 于婧, 翟天文, 梁兴文, 等. 钢-PVA纤维混凝土流动性及力学性能研究[J]. 建筑材料学报, 2018, 21(3):402-407. doi: 10.3969/j.issn.1007-9629.2018.03.009

    YU Jing, ZHAI Tianwen, LIANG Xingwen, et al. Fluidity and mechanical properties of steel-PVA fiber reinforced concrete[J]. Journal of Building Materials,2018,21(3):402-407(in Chinese). doi: 10.3969/j.issn.1007-9629.2018.03.009
    [8] 侯莹莹. 混杂纤维增强混凝土的力学和耐腐蚀性能研究[J]. 功能材料, 2020, 51(11):11116-11120. doi: 10.3969/j.issn.1001-9731.2020.11.016

    HOU Yingying. Study on the mechanical and corrosion resistance of hybrid fiber reinforced concrete[J]. Journal of Functional Materials,2020,51(11):11116-11120(in Chinese). doi: 10.3969/j.issn.1001-9731.2020.11.016
    [9] NOVAK J, KOHOUTKOVA A. Fire response of hybrid fiber reinforced concrete to high temperature[J]. Procedia Engineering,2017,172:784-790. doi: 10.1016/j.proeng.2017.02.123
    [10] DOND F, WANG H, YU J, et al. Effect of freeze-thaw cycling on mechanical properties of polyethylene fiber and steel fiber reinforced concrete[J]. Construction and Building Materials,2021,295:123427. doi: 10.1016/j.conbuildmat.2021.123427
    [11] BLUNT J, JEN G, OSTERTAG C P. Enhancing corrosion resistance of reinforced concrete structures with hybrid fiber reinforced concrete[J]. Corrosion Science,2015,92:182-191. doi: 10.1016/j.corsci.2014.12.003
    [12] YAO W, LI J, WU K. Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction[J]. Cement and Concrete Research,2003,33(1):27-30. doi: 10.1016/S0008-8846(02)00913-4
    [13] 牛旭婧, 乜颖, 朋改非, 等. 养护制度对超高性能混凝土抗高温爆裂性能的影响[J]. 硅酸盐学报, 2020, 48(8):1212-1222.

    NIU Xujing, NIE Ying, PENG Gaifei, et al. Influence of curing regime on resistance of ultra-high performance concrete to explosive spalling under high temperature[J]. Journal of the Chinese Ceramic Society,2020,48(8):1212-1222(in Chinese).
    [14] 王凯, 陈梦成, 杨洋. S-P混杂纤维对混凝土长期性能与耐久性影响[J]. 哈尔滨工业大学学报, 2009, 41(10):206-209. doi: 10.3321/j.issn:0367-6234.2009.10.044

    WANG Kai, CHEN Mengcheng, YANG Yang. Effect of S-P hybrid fibers on long-term behaviors and durability of high-performance concrete[J]. Journal of Harbin Institute of Technology,2009,41(10):206-209(in Chinese). doi: 10.3321/j.issn:0367-6234.2009.10.044
    [15] LIU J L, JIA Y M, WANG J. Calculation of chloride ion diffusion in glass and polypropylene fiber-reinforced concrete[J]. Construction and Building Materials,2019,215:875-885. doi: 10.1016/j.conbuildmat.2019.04.246
    [16] 刘志勇, 夏溪芝, 张云升, 等. 荷载-温度耦合作用下超高性能混凝土的损伤行为[J]. 硅酸盐学报, 2021, 49(6):1238-1246.

    LIU Zhiyong, XIA Xizhi, ZHANG Yunsheng, et al. Damage behavior of ultra-high performance concrete under load-temperature coupling[J]. Journal of the Chinese Ceramic Society,2021,49(6):1238-1246(in Chinese).
    [17] 姜宽, 戚承志, 崔英洁, 等. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(S1):189-192.

    JIANG Kuan, QI Chengzhi, CUI Yingjie, et al. Effects of several factors such as cellulose on the properties of polyethylene fiber reinforced pervious concrete[J]. Materials Reports,2020,34(S1):189-192(in Chinese).
    [18] XUE W P, LIU X Y, JING W, et al. Experimental study and mechanism analysis of permeability sensitivity of mecha-nically damaged concrete to confining pressure[J]. Cement Concrete Research,2020,134:106073. doi: 10.1016/j.cemconres.2020.106073
    [19] YANG L, YAO Z S, XUE W P, et al. Preparation, perfor-mance test and microanalysis of hybrid fibers and microexpansive high-performance shaft lining concrete[J]. Construction and Building Materials,2019,223:431-440. doi: 10.1016/j.conbuildmat.2019.06.230
    [20] XUE W P, ZHANG H W, LI H P, et al. Effect of early age loading on the subsequent mechanical and permeability pro-perties of concrete and its mechanism analysis[J]. Journal of Materials Research and Technology,2021,14:1208-1221. doi: 10.1016/j.jmrt.2021.07.051
    [21] XUE W P, YAO Z S, JING W, et al. Experimental study on permeability evolution during deformation and failure of shaft lining concrete[J]. Construction and Building Materials,2019,195:564-573. doi: 10.1016/j.conbuildmat.2018.11.101
    [22] 赵延林, 付成成, 汪亦显, 等. 全应力–应变过程中裂隙灰岩的水-力耦合特性试验研究[J]. 岩石力学与工程学报, 2016, 35(S2):3763-3773.

    ZHAO Yanlin, FU Chengcheng, WANG Yixian, et al. Tests on hydro-mechanical coupling characteristics of fractured limestone in complete stress-strain process[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(S2):3763-3773(in Chinese).
    [23] 陈丽红. 不同温度作用后混凝土强度变化规律的研究[J]. 四川建筑科学研究, 2007(5):118-121. doi: 10.3969/j.issn.1008-1933.2007.04.031

    CHEN Lihong. The residual compressive strength of heated concrete[J]. Sichuan Building Science,2007(5):118-121(in Chinese). doi: 10.3969/j.issn.1008-1933.2007.04.031
    [24] MEN J J, WANG J C, GUO L Y, et al. Acoustic emission behavior and damage evaluation of recycled aggregate concrete under compression[J]. Structural Control and Health Monitoring,2020,27(10):e2612.
    [25] CHEN H J, YU Y L, TANG C W. Mechanical properties of ultra-high performance concrete before and after expo-sure to high temperatures[J]. Materials,2020,13(3):770. doi: 10.3390/ma13030770
    [26] 张丽秀, 田甜, 王俊海. 基于SVM混凝土电镜图像类型识别[J]. 沈阳建筑大学学报(自然科学版), 2020, 36(1):148-154.

    ZHANG Lixiu, TIAN Tian, WANG Junhai. Image recognition based on SVM concrete electron microscoper image[J]. Journal of Shenyang Jianzhu University (Natural Science),2020,36(1):148-154(in Chinese).
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  712
  • HTML全文浏览量:  292
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-28
  • 修回日期:  2021-11-15
  • 录用日期:  2021-11-16
  • 网络出版日期:  2021-11-20
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回