留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

荷载-温度耦合影响下混杂纤维/混凝土三轴压缩渗透行为

薛维培 范红君 高聪 张瀚文 申磊

薛维培, 范红君, 高聪, 等. 荷载-温度耦合影响下混杂纤维/混凝土三轴压缩渗透行为[J]. 复合材料学报, 2021, 39(0): 1-9
引用本文: 薛维培, 范红君, 高聪, 等. 荷载-温度耦合影响下混杂纤维/混凝土三轴压缩渗透行为[J]. 复合材料学报, 2021, 39(0): 1-9
Weipei XUE, Hongjun FAN, Cong GAO, Hanwen ZHANG, Lei SHEN. Triaxial compression permeability behavior of hybrid fiber reinforced concrete under load-temperature coupling[J]. Acta Materiae Compositae Sinica.
Citation: Weipei XUE, Hongjun FAN, Cong GAO, Hanwen ZHANG, Lei SHEN. Triaxial compression permeability behavior of hybrid fiber reinforced concrete under load-temperature coupling[J]. Acta Materiae Compositae Sinica.

荷载-温度耦合影响下混杂纤维/混凝土三轴压缩渗透行为

基金项目: 安徽省自然科学基金青年项目 (1908085QE185);安徽省住房城乡建设科学技术计划项目 (2021-YF58);深部煤矿采动响应与灾害防控国家重点实验室自主课题 (SKLMRDPC20ZZ05 );安徽理工大学环境友好材料与职业健康研究院研发专项基金资助项目(ALW2021YF14);安徽省大学生创新创业训练计划项目 (S202110361046);安徽理工大学研究生创新基金项目 (2020CX2032)
详细信息
    通讯作者:

    薛维培,博士,副教授,硕士生导师,研究方向为混杂纤维/混凝土水力耦合特性及耐久性 E-mail: xueweipei@163.com

  • 中图分类号: TB528

Triaxial compression permeability behavior of hybrid fiber reinforced concrete under load-temperature coupling

  • 摘要: 为了研究荷载-温度耦合作用对仿钢纤维(Imitation Steel Fiber,ISF)和聚乙烯醇纤维(Polyvinyl Alcohol Fiber,PVAF)混掺的混凝土三轴压缩渗透性能影响,以及ISF-PVAF混杂纤维/混凝土渗透率演化与应力状态的关系,开展固定围压和渗透水压条件下的三轴压缩渗透试验,获得应力-变形曲线、峰值强度以及各应力点处渗透率,结合电镜扫描从内部微观结构变化角度揭示宏观性能改变机理。结果表明:荷载与温度耦合作用使得混杂纤维/混凝土孔隙率呈现出先略微降低后大幅上升的趋势,最大增幅达到80.48%,不利于三轴压缩渗透强度的发展;初始渗透率增加尤其是受温度因素影响增幅更加明显,200℃和300℃作用时初始渗透率相对于100℃分别提高了144.60%、291.55%。根据应力-变形曲线特征,三轴压缩渗透过程可分为初始压密阶段、弹性阶段、裂纹发展阶段、软化阶段,应力状态的改变使得混杂纤维/混凝土内部微裂纹以及残余纤维通道随之变化,直接影响到孔隙水渗流路径,相应地渗透率在各应力阶段表现出大幅下降、相对平稳、急速上升、增幅最大等特征。

     

  • 图  1  仿钢纤维(ISF)和聚乙烯醇纤维(PVAF)纤维表观形貌

    Figure  1.  Morphologies of imitation steel fiber (ISF) and polyvinyl alcohol fiber (PVAF)

    图  2  荷载-温度耦合加载装置

    Figure  2.  Load-temperature coupling loading device

    图  3  试件安装与受力示意图

    Figure  3.  Schematic diagram of specimen installation and load

    图  4  荷载-温度耦合作用前后ISF-PVAF/混凝土孔隙率

    Figure  4.  Porosity of ISF-PVAF/concrete before and after load-temperature coupling

    图  5  ISF-PVAF/混凝土三轴压缩渗透强度

    Figure  5.  Triaxial compressive permeability peak strength of ISF-PVAF/concrete

    图  6  ISF-PVAF/混凝土三轴压缩渗透过程应力-变形-渗透率曲线

    Figure  6.  Stress-deformation-permeability curves of ISF-PVAF/concrete during triaxial compression

    图  7  不同组别ISF-PVAF/混凝土微观结构

    Figure  7.  Microstructures of different groups of ISF-PVAF/concrete

    表  1  ISF和PVAF基本性能参数

    Table  1.   Basic property parameters of ISF and PVAF

    Type of fiberTensile strength/MPaElastic modulus/GPaDiameter/μmSpecific gravity/(g·cm−3)Melting point/℃
    ISF≥38051200±200.91179
    PVAF≥15003915±31.30225
    下载: 导出CSV

    表  2  ISF-PVAF/混凝土配合比(kg·m−3)

    Table  2.   Mix proportion of ISF-PVAF/concrete (kg·m−3)

    CementSandStoneAdmixtureWaterISFPVAF
    380848.121153.88401782.731.56
    下载: 导出CSV

    表  3  ISF-PVAF/混凝土试件编号

    Table  3.   Specimen numbers of ISF-PVAF/concrete

    Specimen numberPreloading level/%Temperature/℃
    F50T10050100
    F50T20050200
    F50T30050300
    F70T10070100
    F70T20070200
    F70T30070300
    下载: 导出CSV
  • [1] 杨娟, 朋改非. 钢纤维类型对超高性能混凝土高温爆裂性能的影响[J]. 复合材料学报, 2018, 35(6):1599-1608.

    YANG Juan, PENG Gaifei. Influence of different types of steel fiber on explosive spalling behavior of ultra-high-performance concrete exposed to high temperature[J]. Acta Materiae Compositae Sinica,2018,35(6):1599-1608(in Chinese).
    [2] BAO H, YU M, CHI Y, et al. Performance evaluation of steel-polypropylene hybrid fiber reinforced concrete under supercritical carbonation[J]. Journal of Building Engineering,2021:103159.
    [3] 余江滔, 史天成, 郁颉, 等. 高性能纤维增强混凝土与筋材复合体系拉伸性能研究[J]. 同济大学学报(自然科学版), 2021, 49(6):825-833. doi: 10.11908/j.issn.0253-374x.20293

    YU Jiangtao, SHI Tiancheng, YU Jie, et al. Experimental study of tensile properties of composite system of high performance concrete and reinforcements[J]. Journal of Tongji University (Natural Science),2021,49(6):825-833(in Chinese). doi: 10.11908/j.issn.0253-374x.20293
    [4] 高丹盈, 景嘉骅, 周潇. 混杂纤维增强再生砖骨料混凝土增强机制与抗压性能计算方法[J]. 复合材料学报, 2018, 35(12): 3441-3449.

    GAO Danying, JING Jiahua, ZHOU Xiao. Reinforcing mechanism and calculation method of compressive behavior of hybrid fiber reinforced recycled brick aggregates concrete[J] Acta Materiae Compositae Sinica, 2018, 35(12): 3441-3449.
    [5] SHI F, PHAM T M, HAO H, et al. Post-cracking behaviour of basalt and macro polypropylene hybrid fibre reinforced concrete with different compressive strengths[J]. Construction and Buildding Materials,2020,262:120108. doi: 10.1016/j.conbuildmat.2020.120108
    [6] 钟光淳, 周颖, 肖意. 钢-聚乙烯醇混杂纤维混凝土单轴受力应力-应变曲线研究[J]. 工程力学, 2020, 37(S1):111-120.

    ZHONG Guangchun, ZHOU Ying, XIAO Yi. Stress-strain behavior of steel-polyviny alcohol hybrid fiber reinforced concrete under axial compression and tension[J]. Engineering Mechanics,2020,37(S1):111-120(in Chinese).
    [7] 于婧, 翟天文, 梁兴文, 等. 钢-PVA纤维混凝土流动性及力学性能研究[J]. 建筑材料学报, 2018, 21(3):402-407. doi: 10.3969/j.issn.1007-9629.2018.03.009

    YU Jing, ZHAI Tianwen, LIANG Xingwen, et al. Fluidity and mechanical properties of steel-PVA fiber reinforced concrete[J]. Journal of Building Materials,2018,21(3):402-407(in Chinese). doi: 10.3969/j.issn.1007-9629.2018.03.009
    [8] 侯莹莹. 混杂纤维增强混凝土的力学和耐腐蚀性能研究[J]. 功能材料, 2020, 51(11):11116-11120. doi: 10.3969/j.issn.1001-9731.2020.11.016

    HOU Yingying. Study on the mechanical and corrosion resistance of hybrid fiber reinforced concrete[J]. Journal of Functional Materials,2020,51(11):11116-11120(in Chinese). doi: 10.3969/j.issn.1001-9731.2020.11.016
    [9] NOVAK J, KOHOUTKOVA A. Fire response of hybrid fiber reinforced concrete to high temperature[J]. Procedia Engineering,2017,172:784-790. doi: 10.1016/j.proeng.2017.02.123
    [10] DOND F, WANG H, YU J, et al. Effect of freeze–thaw cycling on mechanical properties of polyethylene fiber and steel fiber reinforced concrete[J]. Construction and Building Materials,2021,295:123427. doi: 10.1016/j.conbuildmat.2021.123427
    [11] BLUNT J, JEN G, OSTERTAG C P. Enhancing corrosion resistance of reinforced concrete structures with hybrid fiber reinforced concrete[J]. Corrosion Science,2015,92:182-191. doi: 10.1016/j.corsci.2014.12.003
    [12] YAO W, LI J, WU K. Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction[J]. Cement and Concrete Research,2003,33(1):27-30. doi: 10.1016/S0008-8846(02)00913-4
    [13] 牛旭婧, 乜颖, 朋改非, 等. 养护制度对超高性能混凝土抗高温爆裂性能的影响[J]. 硅酸盐学报, 2020, 48(8):1212-1222.

    NIU Xujing, NIE Ying, PENG Gaifei, et al. Influence of curing regime on resistance of ultra-high performance concrete to explosive spalling under high temperature[J]. Journal of the Chinese Ceramic Society,2020,48(8):1212-1222(in Chinese).
    [14] 王凯, 陈梦成, 杨洋. S-P混杂纤维对混凝土长期性能与耐久性影响[J]. 哈尔滨工业大学学报, 2009, 41(10):206-209. doi: 10.3321/j.issn:0367-6234.2009.10.044

    WANG Kai, CHEN Mengcheng, YANG Yang. Effect of S-P hybrid fibers on long-term behaviors and durability of high-performance concrete[J]. Journal of Harbin Institute of Technology,2009,41(10):206-209(in Chinese). doi: 10.3321/j.issn:0367-6234.2009.10.044
    [15] LIU J L, JIA Y M, WANG J. Calculation of chloride ion diffusion in glass and polypropylene fiber-reinforced concrete[J]. Construction and Building Materials,2019,215:875-885. doi: 10.1016/j.conbuildmat.2019.04.246
    [16] 刘志勇, 夏溪芝, 张云升, 等. 荷载-温度耦合作用下超高性能混凝土的损伤行为[J]. 硅酸盐学报, 2021, 49(6):1238-1246.

    LIU Zhiyong, XIA Xizhi, ZHANG Yunsheng, et al. Damage behavior of ultra-high performance concrete under load-temperature coupling[J]. Journal of the Chinese Ceramic Society,2021,49(6):1238-1246(in Chinese).
    [17] 姜宽, 戚承志, 崔英洁, 等. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(S1):189-192.

    JIANG KUAN, QI Chengzhi, CUI Yingjie, et al. Effects of several factors such as cellulose on the properties of polyethylene fiber reinforced pervious concrete[J]. Materials Reports,2020,34(S1):189-192(in Chinese).
    [18] XUE W P, LIU X Y, JING W, et al. Experimental study and mechanism analysis of permeability sensitivity of mechanically damaged concrete to confining pressure[J]. Cement Concrete Research,2020,134:106073. doi: 10.1016/j.cemconres.2020.106073
    [19] YANG L, YAO Z S, XUE W P, et al. Preparation, performance test and microanalysis of hybrid fibers and microexpansive high-performance shaft lining concrete[J]. Construction and Building Materials,2019,223:431-440. doi: 10.1016/j.conbuildmat.2019.06.230
    [20] XUE W P, ZHANG H W, LI H P, et al. Effect of early age loading on the subsequent mechanical and permeability properties of concrete and its mechanism analysis[J]. Journal of Materials Research and Technology,2021,14:1208-1221. doi: 10.1016/j.jmrt.2021.07.051
    [21] XUE W P, YAO Z S, JING W, et al. Experimental study on permeability evolution during deformation and failure of shaft lining concrete[J]. Construction and Building Materials,2019,195:564-573. doi: 10.1016/j.conbuildmat.2018.11.101
    [22] 赵延林, 付成成, 汪亦显, 等. 全应力–应变过程中裂隙灰岩的水-力耦合特性试验研究[J]. 岩石力学与工程学报, 2016, 35(S2):3763-3773.

    ZHAO Yanlin, FU Chengcheng, WANG Yixian, et al. Tests on hydro-mechanical coupling characteristics of fractured limestone in complete stress-strain process[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(S2):3763-3773(in Chinese).
    [23] 陈丽红. 不同温度作用后混凝土强度变化规律的研究[J]. 四川建筑科学研究, 2007, 5:118-121. doi: 10.3969/j.issn.1008-1933.2007.04.031

    CHEN Lihong. The residual compressive strength of heated concrete[J]. Sichuan Building Science,2007,5:118-121(in Chinese). doi: 10.3969/j.issn.1008-1933.2007.04.031
    [24] MEN J J, WANG J C, GUO L Y, et al. Acoustic emission behavior and damage evaluation of recycled aggregate concrete under compression[J]. Structural Control and Health Monitoring,2020,27(10):e2612.
    [25] CHEN H J, YU Y L, TANG C W. Mechanical properties of ultra-high performance concrete before and after exposure to high temperatures[J]. Materials,2020,13(3):770. doi: 10.3390/ma13030770
    [26] 张丽秀, 田甜, 王俊海. 基于SVM混凝土电镜图像类型识别[J]. 沈阳建筑大学学报(自然科学版), 2020, 36(1):148-154.

    ZHANG Lixiu, TIAN Tian, WANG Junhai. Image recognition based on SVM concrete electron microscoper image[J]. Journal of Shenyang Jianzhu University(Nattural Science),2020,36(1):148-154(in Chinese).
  • 加载中
计量
  • 文章访问数:  101
  • HTML全文浏览量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-28
  • 录用日期:  2021-11-16
  • 修回日期:  2021-11-15
  • 网络出版日期:  2021-12-07

目录

    /

    返回文章
    返回