留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe2O3/氮掺杂生物质碳复合材料制备及其在超级电容器中的应用

魏帅 李朝霞 孟淑娟 朱星臣 卢新宇 苏琼 王彦斌

魏帅, 李朝霞, 孟淑娟, 等. Fe2O3/氮掺杂生物质碳复合材料制备及其在超级电容器中的应用[J]. 复合材料学报, 2023, 41(0): 1-14
引用本文: 魏帅, 李朝霞, 孟淑娟, 等. Fe2O3/氮掺杂生物质碳复合材料制备及其在超级电容器中的应用[J]. 复合材料学报, 2023, 41(0): 1-14
Shuai WEI, Zhaoxia LI, Shujuan MENG, Xingchen ZHU, Xinyu LU, Qiong SU, Yanbin WANG. Preparation of Fe2O3/nitrogen-doped biomass carbon composites and their application in supercapacitors[J]. Acta Materiae Compositae Sinica.
Citation: Shuai WEI, Zhaoxia LI, Shujuan MENG, Xingchen ZHU, Xinyu LU, Qiong SU, Yanbin WANG. Preparation of Fe2O3/nitrogen-doped biomass carbon composites and their application in supercapacitors[J]. Acta Materiae Compositae Sinica.

Fe2O3/氮掺杂生物质碳复合材料制备及其在超级电容器中的应用

基金项目: 国家自然科学基金(21968032,22165025);省科技计划项目(20 YF8 FA045);中央高校基本科研业务费项目(31920220044);化学学科创新团队建设项目(1110130139,1110130141);省级一流专业建设(2019 SJYLZY-08);省级高校创新创业项目(2021 SJCXCYXM-01,2021 SJCXCYTD-01);优秀研究生“创新之星”项目(2022 CXZX-200);
详细信息
    通讯作者:

    苏琼,教授,硕士生导师,研究方向为功能复合材料的研究 E-mail: hgsq@xbmu.edu.cn

    王彦斌,教授,硕士生导师,研究方向为生物质复合材料的研究 E-mail: ybwang@126.com

  • 中图分类号: TB333

Preparation of Fe2O3/nitrogen-doped biomass carbon composites and their application in supercapacitors

Funds: National Natural Science Foundation of China, No.21968032, 22165025; Provincial Science and Technology Project, No.20 YF8 FA045; Basic Research Funds for Central Universities, No.31920220044; Chemistry Innovation Team Building Project (1110130139,1110130141); Provincial first-class Professional Construction (2019 SJYLZY-08); Provincial College Innovation and Entrepreneurship Project, No.2021 SJCXCYXM-01, 2021 SJCXCYTD-01; Outstanding Graduate Student "Innovation Star" Project (2022 CXZX-200)
  • 摘要: Fe2O3/ 氮掺杂生物质碳复合材料制备及其在超级电容器中的应用 生物质衍生碳材料以其来源广泛、可再生、环境友好、较好的导电性与高表面积等优势应用于超级电容器中,但其比电容、能量密度较低影响了它的实际应用。在此,本文将生物质废弃物转化为具有良好化学性质的碳材料,并通过杂原子掺杂生物质碳材料与过渡金属氧化物Fe2O3进行复合,利用Fe2O3与氮掺杂碳的互补优势,以一步碳化法制备出Fe2O3/氮掺杂生物质碳复合材料,表现出优异的电化学性能。结果表明:Fe2O3/NBCs作为负极材料在1 A·g-1电流密度下的比电容为575 F·g-1。同时,将Fe2O3/NBCs-700°C和NiCoFe-P分别为负极和正极材料组装成不对称超级电容器,在功率密度为800 W·kg-1的情况下,能量密度达到33.3 W·h·kg-1。组装的不对称超级电容器还表现出优异循环稳定性,经过3500次循环后仍保持82.4%的电容。

     

  • 图  1  Fe2O3/氮掺杂生物质碳(NBCs)制备示意图。

    Figure  1.  Schematic diagram of the preparation of Fe2O3/ nitrogen-doped biomass carbon (NBCs).

    图  2  ((a)、(b)、(c)) Fe2O3/NBCs-700°C不同倍数下的SEM图像;(d) Fe2O3/NBCs-700°C的EDS元素映射图;((e)、(f)、(g)) Fe2O3/NBCs-700°C不同倍数下的TEM图像。

    Figure  2.  ((a)、(b)、(c)) SEM images of Fe2O3/NBCs-700°C under different multiples; (d) EDS element map of Fe2O3/NBCs-700°C; ((e)、(f)、(g)) TEM images of Fe2O3/NBCs-700°C at different multiples.

    图  3  (a) 所有样品的XRD图谱;(b) Fe2O3/NBCs-700°C的Raman图像;(c) Fe2O3/NBCs-700°C的氮气吸附解析曲线;(d) Fe2O3/NBCs-700°C的孔径分布曲线。

    Figure  3.  (a) XRD patterns of all samples; (b) Raman images of Fe2O3/NBCs-700°C; (c) Nitrogen adsorption analytical curve of Fe2O3/NBCs-700°C; (d) Pore size distribution curve of Fe2O3/NBCs-700°C.

    图  4  (a) Fe2O3/NBCs-700°C的全范围XPS光谱图;(b) Fe2O3/NBCs-700°C的Fe 2 p光谱;(c) Fe2O3/NBCs-700°C的C 1 s光谱;(d) Fe2O3/NBCs-700°C的N 1 s光谱。

    Figure  4.  (a) Full range XPS spectrum of Fe2O3/NBCs-700°C; (b) Fe 2 p spectra of Fe2O3/NBCs-700°C; (c) C 1 s spectra of Fe2O3/NBCs-700°C; (d) N 1 s spectra of Fe2O3/NBCs-700°C.

    图  5  (a) 不同条件电极材料在三电极体系中10 mV·s−1扫描速率下的CV曲线;(b) Fe2O3/NBCs-700°C在不同扫描速率下的CV曲线;(c) 不同条件电极材料在1 A·g−1电流密度下的GCD曲线;(d) Fe2O3/NBCs-700°C在不同电流密度下的GCD曲线。

    Figure  5.  (a) CV curves of electrode materials under different conditions at 10 mV·s−1 scanning rate in three electrode system; (b) CV curves of Fe2O3/NBCs-700°C under different scanning rates; (c) GCD curves of electrode materials under different conditions at 1 A·g−1 current density; (d) GCD curves of Fe2O3/NBCs-700°C at different current densities.

    图  6  (a) 比电容与电流密度的函数关系;(b) Nyquist曲线。

    Figure  6.  (a) The functional relationship between specific capacitance and current density; (b) Nyquist curve.

    图  7  (a)、(b) 、(c)、(d) NiCoFe-P不同倍数下的TEM图像。

    Figure  7.  (a)、(b) 、(c)、(d) TEM images of NiCoFe-P at different multiples.

    图  8  NiCoFe-P的XRD图像

    Figure  8.  XRD image of NiCoFe-P

    图  9  (a) NiCoFe-P的氮气吸附解析曲线;(b) NiCoFe-P的孔径分布曲线。

    Figure  9.  (a) Nitrogen adsorption analysis curve ofNiCoFe-P; (b) Pore size distribution curve of NiCoFe-P.

    图  10  (a) NiCoFe-P的全范围XPS谱图;(b) NiCoFe-P的Ni 2 p光谱;(c) NiCoFe-P的Co 2 p光谱;(d) NiCoFe-P的Fe 2 p光谱。

    Figure  10.  (a) full range XPS spectrum of NiCoFe-P; (b) Ni 2 p spectra of NiCoFe-P; (c) Co 2 p spectra of NiCoFe-P; (d) Fe 2 p spectra of NiCoFe-P.

    图  11  (a) NiCoFe-P在三电极体系中不同扫描速率下的CV曲线;(b) NiCoFe-P在不同电流密度下的GCD曲线;(c) 比电容与电流密度的函数关系;(d) Nyquist曲线。

    Figure  11.  (a) CV curves of NiCoFe-P at different scanning rates in three electrode system; (b) GCD curves of NiCoFe-P at different current densities; (c) The functional relationship between specific capacitance and current density; (d) Nyquist curve.

    图  12  (a) Fe2O3/NDCs-700°C//NiCoFe-P不对称超级电容器结构示意图;(b)不同电压区间的CV曲线;(c)不同扫描速率下的CV曲线;(d)不同电流密度下的GCD曲线。

    Figure  12.  (a) Structural diagram of Fe2O3/NDCs-700°C//NiCoFe-P asymmetric supercapacitor; (b) CV curves of different voltage intervals; (c) CV curves at different scanning rates; (d) GCD curves at different current densities.

    图  13  (a)比电容与电流密度的函数关系;(b) Ragone图;(c) 在10 A·g-1下的循环性能;(d) Nyquistqt曲线。

    Figure  13.  (a) Is a function of specific capacitance and current density; (b) Ragone diagram; (c) Cycle performance at 10 A·g-1; (d) Nyquistqt curve

    表  1  XPS测定Fe2O3/NBCs-700°C样品中的元素含量。

    Table  1.   Determination of element content in Fe2O3/NBCs-700°C samples by XPS.

    MaterialsCNOFe
    Fe2O3/NBCs-700°C47.52%7.48%41.29%3.72%
    下载: 导出CSV

    表  2  用XPS法测定NiCoFe-P样品中的元素含量

    Table  2.   Determination of element content in NiCoFe-P samples by XPS.

    MaterialsCOPFeCoNi
    NiCoFe-P24.60%53.86%17.17%1.87%1.94%0.55%
    下载: 导出CSV
  • [1] WANG Y, DU Z, XIAO J, et al. Polypyrrole-encapsulated Fe2O3 nanotube arrays on a carbon cloth support: Achieving synergistic effect for enhanced supercapacitor performance[J]. Electrochimica Acta,2021,386:138486. doi: 10.1016/j.electacta.2021.138486
    [2] ZHU L, LAI S, ZHU J, et al. A facile and environmentally friendly method for preparing supercapacitor electrode carbon-based materials with ultra-long cycling stability[J]. Materials Today Communications,2022,31:103717. doi: 10.1016/j.mtcomm.2022.103717
    [3] WANG Y, WANG D, LI Z, et al. Preparation of Boron/Sulfur-Codoped Porous Carbon Derived from Biological Wastes and Its Application in a Supercapacitor[J]. Nanomaterials,2022,12(7):1182. doi: 10.3390/nano12071182
    [4] ZHU S, DONG X, HUANG H, et al. Rich nitrogen-doped carbon on carbon nanotubes for high-performance sodium-ion supercapacitors[J]. Journal of Power Sources,2020,459:228104. doi: 10.1016/j.jpowsour.2020.228104
    [5] GANGULY A, KARAKASSIDES A, BENSON J, et al. Multifunctional structural supercapacitor based on urea-activated graphene nanoflakes directly grown on carbon fiber electrodes[J]. ACS Applied Energy Materials,2020,3(5):4245-54. doi: 10.1021/acsaem.9b02469
    [6] MA C, WU L, DIRICAN M, et al. Carbon black-based porous sub-micron carbon fibers for flexible supercapacitors[J]. Applied Surface Science,2021,537:147914. doi: 10.1016/j.apsusc.2020.147914
    [7] NIE G, LUAN Y, KOU Z, et al. Fiber-in-tube and particle-in-tube hierarchical nanostructures enable high energy density of MnO2-based asymmetric supercapacitors[J]. Journal of Colloid and Interface Science,2021,582:543-51. doi: 10.1016/j.jcis.2020.08.066
    [8] LI S, FAN Z J M, MATERIALS M. Nitrogen-doped carbon mesh from pyrolysis of cotton in ammonia as binder-free electrodes of supercapacitors[J]. Microporous and Mesoporous Materials,2019,274:313-7. doi: 10.1016/j.micromeso.2018.09.002
    [9] JIANG L, HAN S O, PIRIE M, et al. Seaweed biomass waste-derived carbon as an electrode material for supercapacitor[J]. Energy & Environment,2021,32(6):1117-29.
    [10] QIN L, HOU Z, ZHANG S, et al. Supercapacitive charge storage properties of porous carbons derived from pine nut shells[J]. Journal of Electroanalytical Chemistry,2020,866:114140. doi: 10.1016/j.jelechem.2020.114140
    [11] LIU L, FENG R, PAN Y, et al. Nanoporous carbons derived from poplar catkins for high performance supercapacitors with a redox active electrolyte of p-phenylenediamine[J]. Journal of Alloys and Compounds,2018,748:473-80. doi: 10.1016/j.jallcom.2018.03.073
    [12] HAO J, WANG J, QIN S, et al. B/N co-doped carbon nanosphere frameworks as high-performance electrodes for supercapacitors[J]. Journal of Materials Chemistry A,2018,6(17):8053-8. doi: 10.1039/C8TA00683K
    [13] LIU Q, LI H, CUI X, et al. Controlled fabrication of nitrogen-doped carbon hollow nanospheres for high-performance supercapacitors[J]. Reactive & Functional Polymers,2019,144:104349.
    [14] ZHANG W, XU J, HOU D, et al. Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications[J]. Journal of Colloid and Interface Science,2018,530:338-44. doi: 10.1016/j.jcis.2018.06.076
    [15] GUAN L, PAN L, PENG T, et al. Synthesis of biomass-derived nitrogen-doped porous carbon nanosheests for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2019,7(9):8405-12.
    [16] ZHAO Y, XU Y, ZENG J, et al. Low-crystalline mesoporous CoFe2O4/C composite with oxygen vacancies for high energy density asymmetric supercapacitors[J]. RSC Advances,2017,7(87):55513-22. doi: 10.1039/C7RA11741H
    [17] ZHU M, KAN J, PAN J, et al. One-pot hydrothermal fabrication of α-Fe2O3@C nanocomposites for electrochemical energy storage[J]. Journal of Energy Chemistry,2019,28:1-8. doi: 10.1016/j.jechem.2017.09.021
    [18] HE X, CHEN Q, MAO X, et al. Pseudocapacitance electrode and asymmetric supercapacitor based on biomass juglone/activated carbon composites[J]. RSC Advances,2019,9(53):30809-14. doi: 10.1039/C9RA05858C
    [19] CHUNG M-Y, LO C-T J E A. High-performance binder-free RuO2/electrospun carbon fiber for supercapacitor electrodes[J]. Electrochimica Acta,2020,364:137324. doi: 10.1016/j.electacta.2020.137324
    [20] CHEN Q, CHEN J, ZHOU Y, et al. Enhancing pseudocapacitive kinetics of nanostructured MnO2 through anchoring onto biomass-derived porous carbon[J]. Applied Surface Science,2018,440:1027-36. doi: 10.1016/j.apsusc.2018.01.224
    [21] ZHAO J, TIAN Y, LIU A, et al. The NiO electrode materials in electrochemical capacitor: A review[J]. Materials Science in Semiconductor Processing,2019,96:78-90. doi: 10.1016/j.mssp.2019.02.024
    [22] HU X, WEI L, CHEN R, et al. Reviews and Prospectives of Co3O4-Based Nanomaterials for Supercapacitor Application[J]. ChemistrySelect,2020,5(17):5268-88. doi: 10.1002/slct.201904485
    [23] LI J, CHEN D, WU Q J E J O I C. α-Fe2O3 Based Carbon Composite as Pure Negative Electrode for Application as Supercapacitor[J]. European Journal of Inorganic Chemistry,2019,2019(10):1301-12. doi: 10.1002/ejic.201900015
    [24] GUAN Y, JI P, WAN J, et al. Ag-modified Fe2O3 nanoparticles on a carbon cloth as an anode material for high-performance supercapacitors[J]. Nanotechnology,2020,31(12):125405. doi: 10.1088/1361-6528/ab5a29
    [25] MAZLOUM-ARDAKANI M, SABAGHIAN F, YAVARI M, et al. Enhance the performance of iron oxide nanoparticles in supercapacitor applications through internal contact of α-Fe2O3@ CeO2 core-shell[J]. Journal of Alloys and Compounds,2020,819:152949. doi: 10.1016/j.jallcom.2019.152949
    [26] ZHANG X, LIAO H, LIU X, et al. Facile synthesis of Fe2O3 nanospheres anchored on oxidized graphitic carbon nitride as a high performance electrode material for supercapacitors[J]. International Journal of Electrochemical Science,2020,15:2133-44.
    [27] 王辉辉, 郭俊娥, 高子昂. 绣球荚蒾状硫化钴@富氮炭的设计与构建及超级电容性能[J]. 复合材料学报, 2022, 40(0):1-11.

    WANG H H, GUO J E, GAO Z A. Design and fabrication of hydrangea viburnum-like cobalt sulfide@nitrogen-rich carbon for high-performance supercapacitors[J]. Acta Materiae Compositae Sinica,2022,40(0):1-11(in Chinese).
    [28] ALEXANDRELI M, BROCCHI C B, SOARES D M, et al. Pseudocapacitive behaviour of iron oxides supported on carbon nanofibers as a composite electrode material for aqueous-based supercapacitors[J]. Journal of Energy Storage,2021,42:103052. doi: 10.1016/j.est.2021.103052
    [29] DONG K, YANG Z, SHI D, et al. Nitrogen-doped carbon boosting Fe2O3 anode performance for supercapacitors[J]. Journal of Materials Science:Materials in Electronics,2022,33:1-11.
    [30] ALEX S J I C C. Microsphere rGO/MnO2 composites as electrode materials for high-performance symmetric supercapacitors synthesized by reflux reaction[J]. Inorganic Chemistry Communications,2022,141:109508. doi: 10.1016/j.inoche.2022.109508
    [31] WANG L, YANG H, LIU X, et al. Constructing hierarchical tectorum-like α-Fe2O3/PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors[J]. Angewandte Chemie International Edition,2017,56(4):1105-10. doi: 10.1002/anie.201609527
    [32] ZHANG Y, DENG F, ZHANG Q, et al. One-step synthesis of polymer based N-doped porous carbon with enriched nitrogen content and its enhanced electrochemical properties in supercapacitors[J]. Journal of Energy Storage,2022,55:105494. doi: 10.1016/j.est.2022.105494
    [33] JI L, WANG B, YU Y, et al. N, S co-doped biomass derived carbon with sheet-like microstructures for supercapacitors[J]. Electrochimica Acta,2020,331:135348. doi: 10.1016/j.electacta.2019.135348
    [34] SHU Y, MARUYAMA J, IWASAKI S, et al. Nitrogen-doped biomass/polymer composite porous carbons for high performance supercapacitor[J]. Journal of Power Sources,2017,364:374-82. doi: 10.1016/j.jpowsour.2017.08.059
    [35] LI S, FAN Z J M, MATERIALS M. Nitrogen-doped carbon mesh from pyrolysis of cotton in ammonia as binder-free electrodes of supercapacitors[J]. Microporous and Mesoporous Materials,2019,274:313-7. doi: 10.1016/j.micromeso.2018.09.002
    [36] ZHOU J, XU S, NI L, et al. Iron oxide encapsulated in nitrogen-doped carbon as high energy anode material for asymmetric supercapacitors[J]. Journal of Power Sources,2019,438:227047. doi: 10.1016/j.jpowsour.2019.227047
    [37] ZHANG S, YIN B, WANG Z, et al. Super long-life all solid-state asymmetric supercapacitor based on NiO nanosheets and α-Fe2O3 nanorods[J]. Chemical Engineering Journal,2016,306:193-203. doi: 10.1016/j.cej.2016.07.057
    [38] HU J, SUN L, XIE F, et al. A sandwich-like CoNiLDH@ rGO@ CoNi2S4 electrode enabling high mass loading and high areal capacitance for solid-state supercapacitors[J]. Journal of Materials Chemistry A,2022,10(40):21590-21602. doi: 10.1039/D2TA05977K
    [39] CHEN J, REN Y, ZHANG H, et al. Ni-Co-Fe layered double hydroxide coated on Ti3C2 MXene for high-performance asymmetric supercapacitor[J]. Applied Surface Science,2021,562:150116. doi: 10.1016/j.apsusc.2021.150116
    [40] LIU R, SHI X-R, WEN Y, et al. Trimetallic synergistic optimization of 0 D NiCoFe-P QDs anchoring on 2 D porous carbon for efficient electrocatalysis and high-energy supercapacitor[J]. Journal of Energy Chemistry,2022,74:149-58. doi: 10.1016/j.jechem.2022.07.015
    [41] JIANG J, SUN Y, CHEN Y, et al. One-step synthesis of nickel cobalt sulfide nanostructure for high-performance supercapacitor[J]. Journal of Materials Science,2019,54(18):11936-50. doi: 10.1007/s10853-019-03746-8
    [42] 赵雪静, 孙晓君, 魏金枝, 等. 电化学法原位合成Zn/Co-ZIF材料及电容性能[J]. 复合材料学报, 2021, 38(5):1543-1550. doi: 10.13801/j.cnki.fhclxb.20200831.001

    ZHAO X J, SUN X J, WEI J Z, et al. Electrochemical synthesis of Zn/Co-ZIF material and capacitive properties[J]. Acta Materiae Compositae Sinica,2021,38(5):1543-1550(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200831.001
    [43] CAI D, DU J, ZHU C, et al. Iron oxide nanoneedles anchored on N-doped carbon nanoarrays as an electrode for high-performance hybrid supercapacitor[J]. ACS Applied Energy Materials,2020,3(12):12162-71. doi: 10.1021/acsaem.0c02238
    [44] LI P, XIE H, WANG X, et al. Sustainable production of nano α-Fe2O3/N-doped biochar hybrid nanosheets for supercapacitors[J]. Sustainable Energy & Fuels,2020,4(9):4522-30.
    [45] LUAN Y, NIE G, ZHAO X, et al. The integration of SnO2 dots and porous carbon nanofibers for flexible supercapacitors[J]. Electrochimica Acta,2019,308:121-30. doi: 10.1016/j.electacta.2019.03.204
    [46] YUE L, ZHANG S, ZHAO H, et al. One-pot synthesis CoFe2O4/CNTs composite for asymmetric supercapacitor electrode[J]. Solid State Ionics,2019,329:15-24. doi: 10.1016/j.ssi.2018.11.006
    [47] JI S-H, CHODANKAR N R, KIM D-H J E A. Aqueous asymmetric supercapacitor based on RuO2-WO3 electrodes[J]. Electrochimica Acta,2019,325:134879. doi: 10.1016/j.electacta.2019.134879
    [48] 苏小辉, 谢启星, 何青青, 等. α-MnO2@氮掺杂TiO2/碳纸多孔结构构筑高性能超级电容器[J]. 复合材料学, 2022, 39(4):1628-1637.

    SU X H, XIE Q X, HE Q Q, et al. Building a high-performance supercapacitor with α-MnO2@nitrided TiO2/carbon fiber paper porous structure[J]. Acta Materiae Compositae Sinica,2022,39(4):1628-1637(in Chinese).
  • 加载中
计量
  • 文章访问数:  168
  • HTML全文浏览量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-25
  • 修回日期:  2022-12-26
  • 录用日期:  2023-01-08
  • 网络出版日期:  2023-02-03

目录

    /

    返回文章
    返回