Preparation of Fe2O3/nitrogen-doped biomass carbon composites and their application in supercapacitors
-
摘要:
Fe2O3/ 氮掺杂生物质碳复合材料制备及其在超级电容器中的应用 生物质衍生碳材料以其来源广泛、可再生、环境友好、较好的导电性与高表面积等优势应用于超级电容器中,但其比电容、能量密度较低影响了它的实际应用。在此,本文将生物质废弃物转化为具有良好化学性质的碳材料,并通过杂原子掺杂生物质碳材料与过渡金属氧化物Fe2O3进行复合,利用Fe2O3与氮掺杂碳的互补优势,以一步碳化法制备出Fe2O3/氮掺杂生物质碳复合材料,表现出优异的电化学性能。结果表明:Fe2O3/NBCs作为负极材料在1 A·g-1电流密度下的比电容为575 F·g-1。同时,将Fe2O3/NBCs-700°C和NiCoFe-P分别为负极和正极材料组装成不对称超级电容器,在功率密度为800 W·kg-1的情况下,能量密度达到33.3 W·h·kg-1。组装的不对称超级电容器还表现出优异循环稳定性,经过3500次循环后仍保持82.4%的电容。 图 (a)比电容与电流密度的函数关系;(b)能量密度 Abstract: The development of renewable, low-cost and environmentally friendly electrode materials with fast ion/electron transfer rate and adjustable surface chemistry is an urgent need for the development of current energy storage devices. In recent years, biomass carbon materials have attracted much attention because of their low cost, renewable and good cycling performance, but their low specific capacitance and energy density affect their practical applications. Here, the biomass waste was transformed into carbon materials with good chemical properties, and the transition metal oxide Fe2O3 was composite by heteroatom-doped biomass carbon materials, taking advantage of the complementary strengths of Fe2O3 and nitrogen doped carbon was used to prepare Fe2O3/ nitrogen-doped biomass carbon (NBCs) composite materials by one-step carbonization, showing excellent electrochemical performance. The results show that the specific capacitance of Fe2O3/NBCs as the negative electrode material is 575 F·g−1 at a current density of 1 A·g−1. At the same time, Fe2O3/NBCs-700°C and NiCoFe-P were used as cathode and cathode materials respectively to assemble asymmetric supercapacitors, achieves an energy density of 33 W·h·kg−1 at a power density of 800 W·kg−1. The assembled asymmetric supercapacitors also exhibit excellent cycling stability, maintaining 82.35% capacitance after 3500 cycles. Therefore, Fe2O3/NBCs is a promising electrode material for supercapacitors as negative electrode materials.-
Key words:
- biomass /
- Fe2O3 /
- Nitrogen doping /
- Composite material /
- Supercapacitor /
- Electrode material /
- energy storage
-
图 2 ((a)、(b)、(c)) Fe2O3/NBCs-700°C不同倍数下的SEM图像;(d) Fe2O3/NBCs-700°C的EDS元素映射图;((e)、(f)、(g)) Fe2O3/NBCs-700°C不同倍数下的TEM图像。
Figure 2. ((a)、(b)、(c)) SEM images of Fe2O3/NBCs-700°C under different multiples; (d) EDS element map of Fe2O3/NBCs-700°C; ((e)、(f)、(g)) TEM images of Fe2O3/NBCs-700°C at different multiples.
图 3 (a) 所有样品的XRD图谱;(b) Fe2O3/NBCs-700°C的Raman图像;(c) Fe2O3/NBCs-700°C的氮气吸附解析曲线;(d) Fe2O3/NBCs-700°C的孔径分布曲线。
Figure 3. (a) XRD patterns of all samples; (b) Raman images of Fe2O3/NBCs-700°C; (c) Nitrogen adsorption analytical curve of Fe2O3/NBCs-700°C; (d) Pore size distribution curve of Fe2O3/NBCs-700°C.
图 4 (a) Fe2O3/NBCs-700°C的全范围XPS光谱图;(b) Fe2O3/NBCs-700°C的Fe 2 p光谱;(c) Fe2O3/NBCs-700°C的C 1 s光谱;(d) Fe2O3/NBCs-700°C的N 1 s光谱。
Figure 4. (a) Full range XPS spectrum of Fe2O3/NBCs-700°C; (b) Fe 2 p spectra of Fe2O3/NBCs-700°C; (c) C 1 s spectra of Fe2O3/NBCs-700°C; (d) N 1 s spectra of Fe2O3/NBCs-700°C.
图 5 (a) 不同条件电极材料在三电极体系中10 mV·s−1扫描速率下的CV曲线;(b) Fe2O3/NBCs-700°C在不同扫描速率下的CV曲线;(c) 不同条件电极材料在1 A·g−1电流密度下的GCD曲线;(d) Fe2O3/NBCs-700°C在不同电流密度下的GCD曲线。
Figure 5. (a) CV curves of electrode materials under different conditions at 10 mV·s−1 scanning rate in three electrode system; (b) CV curves of Fe2O3/NBCs-700°C under different scanning rates; (c) GCD curves of electrode materials under different conditions at 1 A·g−1 current density; (d) GCD curves of Fe2O3/NBCs-700°C at different current densities.
图 11 (a) NiCoFe-P在三电极体系中不同扫描速率下的CV曲线;(b) NiCoFe-P在不同电流密度下的GCD曲线;(c) 比电容与电流密度的函数关系;(d) Nyquist曲线。
Figure 11. (a) CV curves of NiCoFe-P at different scanning rates in three electrode system; (b) GCD curves of NiCoFe-P at different current densities; (c) The functional relationship between specific capacitance and current density; (d) Nyquist curve.
图 12 (a) Fe2O3/NDCs-700°C//NiCoFe-P不对称超级电容器结构示意图;(b)不同电压区间的CV曲线;(c)不同扫描速率下的CV曲线;(d)不同电流密度下的GCD曲线。
Figure 12. (a) Structural diagram of Fe2O3/NDCs-700°C//NiCoFe-P asymmetric supercapacitor; (b) CV curves of different voltage intervals; (c) CV curves at different scanning rates; (d) GCD curves at different current densities.
表 1 XPS测定Fe2O3/NBCs-700°C样品中的元素含量。
Table 1. Determination of element content in Fe2O3/NBCs-700°C samples by XPS.
Materials C N O Fe Fe2O3/NBCs-700°C 47.52% 7.48% 41.29% 3.72% 表 2 用XPS法测定NiCoFe-P样品中的元素含量
Table 2. Determination of element content in NiCoFe-P samples by XPS.
Materials C O P Fe Co Ni NiCoFe-P 24.60% 53.86% 17.17% 1.87% 1.94% 0.55% -
[1] WANG Y, DU Z, XIAO J, et al. Polypyrrole-encapsulated Fe2O3 nanotube arrays on a carbon cloth support: Achieving synergistic effect for enhanced supercapacitor performance[J]. Electrochimica Acta,2021,386:138486. doi: 10.1016/j.electacta.2021.138486 [2] ZHU L, LAI S, ZHU J, et al. A facile and environmentally friendly method for preparing supercapacitor electrode carbon-based materials with ultra-long cycling stability[J]. Materials Today Communications,2022,31:103717. doi: 10.1016/j.mtcomm.2022.103717 [3] WANG Y, WANG D, LI Z, et al. Preparation of Boron/Sulfur-Codoped Porous Carbon Derived from Biological Wastes and Its Application in a Supercapacitor[J]. Nanomaterials,2022,12(7):1182. doi: 10.3390/nano12071182 [4] ZHU S, DONG X, HUANG H, et al. Rich nitrogen-doped carbon on carbon nanotubes for high-performance sodium-ion supercapacitors[J]. Journal of Power Sources,2020,459:228104. doi: 10.1016/j.jpowsour.2020.228104 [5] GANGULY A, KARAKASSIDES A, BENSON J, et al. Multifunctional structural supercapacitor based on urea-activated graphene nanoflakes directly grown on carbon fiber electrodes[J]. ACS Applied Energy Materials,2020,3(5):4245-54. doi: 10.1021/acsaem.9b02469 [6] MA C, WU L, DIRICAN M, et al. Carbon black-based porous sub-micron carbon fibers for flexible supercapacitors[J]. Applied Surface Science,2021,537:147914. doi: 10.1016/j.apsusc.2020.147914 [7] NIE G, LUAN Y, KOU Z, et al. Fiber-in-tube and particle-in-tube hierarchical nanostructures enable high energy density of MnO2-based asymmetric supercapacitors[J]. Journal of Colloid and Interface Science,2021,582:543-51. doi: 10.1016/j.jcis.2020.08.066 [8] LI S, FAN Z J M, MATERIALS M. Nitrogen-doped carbon mesh from pyrolysis of cotton in ammonia as binder-free electrodes of supercapacitors[J]. Microporous and Mesoporous Materials,2019,274:313-7. doi: 10.1016/j.micromeso.2018.09.002 [9] JIANG L, HAN S O, PIRIE M, et al. Seaweed biomass waste-derived carbon as an electrode material for supercapacitor[J]. Energy & Environment,2021,32(6):1117-29. [10] QIN L, HOU Z, ZHANG S, et al. Supercapacitive charge storage properties of porous carbons derived from pine nut shells[J]. Journal of Electroanalytical Chemistry,2020,866:114140. doi: 10.1016/j.jelechem.2020.114140 [11] LIU L, FENG R, PAN Y, et al. Nanoporous carbons derived from poplar catkins for high performance supercapacitors with a redox active electrolyte of p-phenylenediamine[J]. Journal of Alloys and Compounds,2018,748:473-80. doi: 10.1016/j.jallcom.2018.03.073 [12] HAO J, WANG J, QIN S, et al. B/N co-doped carbon nanosphere frameworks as high-performance electrodes for supercapacitors[J]. Journal of Materials Chemistry A,2018,6(17):8053-8. doi: 10.1039/C8TA00683K [13] LIU Q, LI H, CUI X, et al. Controlled fabrication of nitrogen-doped carbon hollow nanospheres for high-performance supercapacitors[J]. Reactive & Functional Polymers,2019,144:104349. [14] ZHANG W, XU J, HOU D, et al. Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications[J]. Journal of Colloid and Interface Science,2018,530:338-44. doi: 10.1016/j.jcis.2018.06.076 [15] GUAN L, PAN L, PENG T, et al. Synthesis of biomass-derived nitrogen-doped porous carbon nanosheests for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2019,7(9):8405-12. [16] ZHAO Y, XU Y, ZENG J, et al. Low-crystalline mesoporous CoFe2O4/C composite with oxygen vacancies for high energy density asymmetric supercapacitors[J]. RSC Advances,2017,7(87):55513-22. doi: 10.1039/C7RA11741H [17] ZHU M, KAN J, PAN J, et al. One-pot hydrothermal fabrication of α-Fe2O3@C nanocomposites for electrochemical energy storage[J]. Journal of Energy Chemistry,2019,28:1-8. doi: 10.1016/j.jechem.2017.09.021 [18] HE X, CHEN Q, MAO X, et al. Pseudocapacitance electrode and asymmetric supercapacitor based on biomass juglone/activated carbon composites[J]. RSC Advances,2019,9(53):30809-14. doi: 10.1039/C9RA05858C [19] CHUNG M-Y, LO C-T J E A. High-performance binder-free RuO2/electrospun carbon fiber for supercapacitor electrodes[J]. Electrochimica Acta,2020,364:137324. doi: 10.1016/j.electacta.2020.137324 [20] CHEN Q, CHEN J, ZHOU Y, et al. Enhancing pseudocapacitive kinetics of nanostructured MnO2 through anchoring onto biomass-derived porous carbon[J]. Applied Surface Science,2018,440:1027-36. doi: 10.1016/j.apsusc.2018.01.224 [21] ZHAO J, TIAN Y, LIU A, et al. The NiO electrode materials in electrochemical capacitor: A review[J]. Materials Science in Semiconductor Processing,2019,96:78-90. doi: 10.1016/j.mssp.2019.02.024 [22] HU X, WEI L, CHEN R, et al. Reviews and Prospectives of Co3O4-Based Nanomaterials for Supercapacitor Application[J]. ChemistrySelect,2020,5(17):5268-88. doi: 10.1002/slct.201904485 [23] LI J, CHEN D, WU Q J E J O I C. α-Fe2O3 Based Carbon Composite as Pure Negative Electrode for Application as Supercapacitor[J]. European Journal of Inorganic Chemistry,2019,2019(10):1301-12. doi: 10.1002/ejic.201900015 [24] GUAN Y, JI P, WAN J, et al. Ag-modified Fe2O3 nanoparticles on a carbon cloth as an anode material for high-performance supercapacitors[J]. Nanotechnology,2020,31(12):125405. doi: 10.1088/1361-6528/ab5a29 [25] MAZLOUM-ARDAKANI M, SABAGHIAN F, YAVARI M, et al. Enhance the performance of iron oxide nanoparticles in supercapacitor applications through internal contact of α-Fe2O3@ CeO2 core-shell[J]. Journal of Alloys and Compounds,2020,819:152949. doi: 10.1016/j.jallcom.2019.152949 [26] ZHANG X, LIAO H, LIU X, et al. Facile synthesis of Fe2O3 nanospheres anchored on oxidized graphitic carbon nitride as a high performance electrode material for supercapacitors[J]. International Journal of Electrochemical Science,2020,15:2133-44. [27] 王辉辉, 郭俊娥, 高子昂. 绣球荚蒾状硫化钴@富氮炭的设计与构建及超级电容性能[J]. 复合材料学报, 2022, 40(0):1-11.WANG H H, GUO J E, GAO Z A. Design and fabrication of hydrangea viburnum-like cobalt sulfide@nitrogen-rich carbon for high-performance supercapacitors[J]. Acta Materiae Compositae Sinica,2022,40(0):1-11(in Chinese). [28] ALEXANDRELI M, BROCCHI C B, SOARES D M, et al. Pseudocapacitive behaviour of iron oxides supported on carbon nanofibers as a composite electrode material for aqueous-based supercapacitors[J]. Journal of Energy Storage,2021,42:103052. doi: 10.1016/j.est.2021.103052 [29] DONG K, YANG Z, SHI D, et al. Nitrogen-doped carbon boosting Fe2O3 anode performance for supercapacitors[J]. Journal of Materials Science:Materials in Electronics,2022,33:1-11. [30] ALEX S J I C C. Microsphere rGO/MnO2 composites as electrode materials for high-performance symmetric supercapacitors synthesized by reflux reaction[J]. Inorganic Chemistry Communications,2022,141:109508. doi: 10.1016/j.inoche.2022.109508 [31] WANG L, YANG H, LIU X, et al. Constructing hierarchical tectorum-like α-Fe2O3/PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors[J]. Angewandte Chemie International Edition,2017,56(4):1105-10. doi: 10.1002/anie.201609527 [32] ZHANG Y, DENG F, ZHANG Q, et al. One-step synthesis of polymer based N-doped porous carbon with enriched nitrogen content and its enhanced electrochemical properties in supercapacitors[J]. Journal of Energy Storage,2022,55:105494. doi: 10.1016/j.est.2022.105494 [33] JI L, WANG B, YU Y, et al. N, S co-doped biomass derived carbon with sheet-like microstructures for supercapacitors[J]. Electrochimica Acta,2020,331:135348. doi: 10.1016/j.electacta.2019.135348 [34] SHU Y, MARUYAMA J, IWASAKI S, et al. Nitrogen-doped biomass/polymer composite porous carbons for high performance supercapacitor[J]. Journal of Power Sources,2017,364:374-82. doi: 10.1016/j.jpowsour.2017.08.059 [35] LI S, FAN Z J M, MATERIALS M. Nitrogen-doped carbon mesh from pyrolysis of cotton in ammonia as binder-free electrodes of supercapacitors[J]. Microporous and Mesoporous Materials,2019,274:313-7. doi: 10.1016/j.micromeso.2018.09.002 [36] ZHOU J, XU S, NI L, et al. Iron oxide encapsulated in nitrogen-doped carbon as high energy anode material for asymmetric supercapacitors[J]. Journal of Power Sources,2019,438:227047. doi: 10.1016/j.jpowsour.2019.227047 [37] ZHANG S, YIN B, WANG Z, et al. Super long-life all solid-state asymmetric supercapacitor based on NiO nanosheets and α-Fe2O3 nanorods[J]. Chemical Engineering Journal,2016,306:193-203. doi: 10.1016/j.cej.2016.07.057 [38] HU J, SUN L, XIE F, et al. A sandwich-like CoNiLDH@ rGO@ CoNi2S4 electrode enabling high mass loading and high areal capacitance for solid-state supercapacitors[J]. Journal of Materials Chemistry A,2022,10(40):21590-21602. doi: 10.1039/D2TA05977K [39] CHEN J, REN Y, ZHANG H, et al. Ni-Co-Fe layered double hydroxide coated on Ti3C2 MXene for high-performance asymmetric supercapacitor[J]. Applied Surface Science,2021,562:150116. doi: 10.1016/j.apsusc.2021.150116 [40] LIU R, SHI X-R, WEN Y, et al. Trimetallic synergistic optimization of 0 D NiCoFe-P QDs anchoring on 2 D porous carbon for efficient electrocatalysis and high-energy supercapacitor[J]. Journal of Energy Chemistry,2022,74:149-58. doi: 10.1016/j.jechem.2022.07.015 [41] JIANG J, SUN Y, CHEN Y, et al. One-step synthesis of nickel cobalt sulfide nanostructure for high-performance supercapacitor[J]. Journal of Materials Science,2019,54(18):11936-50. doi: 10.1007/s10853-019-03746-8 [42] 赵雪静, 孙晓君, 魏金枝, 等. 电化学法原位合成Zn/Co-ZIF材料及电容性能[J]. 复合材料学报, 2021, 38(5):1543-1550. doi: 10.13801/j.cnki.fhclxb.20200831.001ZHAO X J, SUN X J, WEI J Z, et al. Electrochemical synthesis of Zn/Co-ZIF material and capacitive properties[J]. Acta Materiae Compositae Sinica,2021,38(5):1543-1550(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200831.001 [43] CAI D, DU J, ZHU C, et al. Iron oxide nanoneedles anchored on N-doped carbon nanoarrays as an electrode for high-performance hybrid supercapacitor[J]. ACS Applied Energy Materials,2020,3(12):12162-71. doi: 10.1021/acsaem.0c02238 [44] LI P, XIE H, WANG X, et al. Sustainable production of nano α-Fe2O3/N-doped biochar hybrid nanosheets for supercapacitors[J]. Sustainable Energy & Fuels,2020,4(9):4522-30. [45] LUAN Y, NIE G, ZHAO X, et al. The integration of SnO2 dots and porous carbon nanofibers for flexible supercapacitors[J]. Electrochimica Acta,2019,308:121-30. doi: 10.1016/j.electacta.2019.03.204 [46] YUE L, ZHANG S, ZHAO H, et al. One-pot synthesis CoFe2O4/CNTs composite for asymmetric supercapacitor electrode[J]. Solid State Ionics,2019,329:15-24. doi: 10.1016/j.ssi.2018.11.006 [47] JI S-H, CHODANKAR N R, KIM D-H J E A. Aqueous asymmetric supercapacitor based on RuO2-WO3 electrodes[J]. Electrochimica Acta,2019,325:134879. doi: 10.1016/j.electacta.2019.134879 [48] 苏小辉, 谢启星, 何青青, 等. α-MnO2@氮掺杂TiO2/碳纸多孔结构构筑高性能超级电容器[J]. 复合材料学, 2022, 39(4):1628-1637.SU X H, XIE Q X, HE Q Q, et al. Building a high-performance supercapacitor with α-MnO2@nitrided TiO2/carbon fiber paper porous structure[J]. Acta Materiae Compositae Sinica,2022,39(4):1628-1637(in Chinese). -

计量
- 文章访问数: 168
- HTML全文浏览量: 146
- 被引次数: 0