留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米金刚石/酵母-壳聚糖复合微球的制备及光热控释性能

王锦 白波 罗钰 葛广宁 邓祥云 王其召 曹芳利

王锦, 白波, 罗钰, 等. 纳米金刚石/酵母-壳聚糖复合微球的制备及光热控释性能[J]. 复合材料学报, 2023, 40(3): 1676-1685. doi: 10.13801/j.cnki.fhclxb.20220616.001
引用本文: 王锦, 白波, 罗钰, 等. 纳米金刚石/酵母-壳聚糖复合微球的制备及光热控释性能[J]. 复合材料学报, 2023, 40(3): 1676-1685. doi: 10.13801/j.cnki.fhclxb.20220616.001
WANG Jin, BAI Bo, LUO Yu, et al. Preparation and photo-thermal controlled release properties of nanodiamond/yeast-chitosan composite microspheres[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1676-1685. doi: 10.13801/j.cnki.fhclxb.20220616.001
Citation: WANG Jin, BAI Bo, LUO Yu, et al. Preparation and photo-thermal controlled release properties of nanodiamond/yeast-chitosan composite microspheres[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1676-1685. doi: 10.13801/j.cnki.fhclxb.20220616.001

纳米金刚石/酵母-壳聚糖复合微球的制备及光热控释性能

doi: 10.13801/j.cnki.fhclxb.20220616.001
基金项目: 陕西省科技计划项目重点研发计划(211429220192);陕西省自然科学基础研究计划资助项目(2021SF-497;2022TD-04);陕西省水利科技项目(2015slkj-02);中央高校基本科研专项(CHD300102291403;CHD300102290103;CHD300102292903);长安大学2021年大学生创新创业训练计划专项(S202110710308)
详细信息
    通讯作者:

    罗钰,博士,高级工程师,硕士生导师,研究方向为新型复合材料制备及应用 E-mail:13289367808@163.com

  • 中图分类号: TB332

Preparation and photo-thermal controlled release properties of nanodiamond/yeast-chitosan composite microspheres

Funds: Shaanxi Provincial Key Research and Development Program of Science and Technology (211429220192); Natural Science Basic Research Program of Shaanxi Province (2021SF-497; 2022TD-04); Water Conservancy Science and Technology Project of Shaanxi Province (2015slkj-02); Basic Research Project of the Central Universities (CHD300102291403; CHD300102290103; CHD300102292903); Chang'an University Innovation and Entrepreneurship Training Program for College Students in 2021 (S202110710308)
  • 摘要: 开发高性能功能性光热凝胶并建立药物控释模型对农药智能输送材料的开发具有重要意义。以酵母-壳聚糖水凝胶(YS-CS)为基体,引入光热材料纳米金刚石(DND),通过碱凝胶法合成了纳米金刚石/酵母-壳聚糖(DND/YS-CS)交联网络结构复合凝胶微球,研究了复合微球的微观结构、力学性能和光热转换性能;以吲哚丁酸(IBA)为模型药物,探讨DND/YS-CS对IBA的负载性能和控释性能,揭示复合微球对IBA的光热控释机制。结果表明:复合微球具有良好的力学性能,在分别超声和离心1 h后,DND含量为2.0 mg/mL复合微球保水能力分别达到70.5%和74%;复合微球具有良好的光热转换能力,一个太阳光强度下,最高温度可达37.6℃;DND含量为1.2 mg/mL复合微球对IBA的吸附量最高,可达到41.73 μg/mg;微球在光下药物释放模式符合Korsmeyer-Peppas模型,在光下具有明显的刺激响应行为,药物释放呈现“开-关”模式。通过控制光的照射强度控制药物释放,在农业领域有广阔的应用前景。

     

  • 图  1  纳米金刚石/酵母-壳聚糖(DND/YS-CS)微球的形成及吲哚丁酸(IBA)释放过程示意图

    Figure  1.  Schematic illustration of the synthesis of nanodiamond/yeast-chitosan (DND/YS-CS) composite microspheres and indole-3-butyric acid (IBA) release process

    图  2  YS、CS、DND和DND/YS-CS的FTIR图谱

    Figure  2.  FTIR spectra of YS, CS, DND and DND/YS-CS

    图  3  DND (a)、CS (b) 和YS (d) 的照片;(c) DND的TEM图像;(e) 溶胀平衡的复合材料(湿)和干燥后的复合材料(干)照片;CS ((f), (g))、DND/YS-CS ((h), (i)) 的SEM图像;YS-CS (j)、DND/YS-CS (k) 的截面及相应的元素分布图

    Figure  3.  Photographs of DND (a), CS (b) and YS (d); (c) TEM image of DND; (e) Photograph of dissolution equilibrium composite (wet) and dried composite (dry); SEM images of CS ((f), (g)), DND/YS-CS ((h), (i)); Cross sections and the corresponding elemental distributions of YS-CS (j), DND/YS-CS (k)

    图  4  不同条件下DND/YS-CS的力学性能:(a) 4000 r/min离心;(b) 40 kHz超声;(c) 力学强度分析

    Figure  4.  Mechanical properties of DND/YS-CS under different conditions: (a) 4000 r/min centrifugation; (b) 40 kHz ultrasonication; (c) Mechanical strength analysis

    图  5  (a) DND、YS-CS和DND/YS-CS的紫外可见漫反射光谱图;(b)纯水和1.2 mg/mL DND溶液的温度变化图;100 mW/cm2下不同DND含量DND/YS-CS复合微球的红外热成像图(c)及相应的温度随时间变化图(d)

    Figure  5.  (a) UV-vis diffuse reflectance spectra of DND, YS-CS and DND/YS-CS; (b) Temperature variation of pure water and 1.2 mg/mL DND solution; Infrared thermal imaging (c) of DND/YS-CS microspheres with different contents of DND under irradiation 100 mW/cm2 and the corresponding temperature variation (d)

    图  6  不同含量DND复合微球对IBA的负载量

    Figure  6.  IBA loading rates of DND composite microspheres with different contents of DND

    图  7  (a) 不同DND含量DND/YS-CS复合微球在光下的IBA释放及其相对应的模型:(b) 一级模型;(c) Korsmeyer-Peppas模型;(d) Higuchi模型

    Figure  7.  (a) IBA release from DND/YS-CS composite microspheres with different contents of DND under light and their corresponding models: (b) Primary model; (c) Korsmeyer-Peppas model; (d) Higuchi model

    Mt, M—Cumulative amount of drug released at time t and equilibrium, respectively (μg/mL)

    图  8  DND/YS-CS复合微球(DND含量1.2 mg/mL)间歇光照及无光照条件下IBA的释放 (a) 及相对应的温度变化(b)

    Figure  8.  IBA release (a) from DND/YS-CS composite microsphere (1.2 mg/mL DND) with intermittent light and without light and the corresponding temperature change (b)

    表  1  不同动力学模型相对应的参数

    Table  1.   Parameters corresponding to different dynamics models

    Sample/
    (mg·mL−1)
    Primary modelKorsmeyer-Peppas modelHiguchi model
    KR2KR2nKR2
    00.03530.8326 2.55920.94540.467711.1290.9436
    0.40.06000.788940.18520.94740.558011.4900.9135
    0.80.06230.804525.08820.94910.534613.1460.9278
    1.20.06540.779946.91320.92580.524114.1430.8676
    2.00.06250.764746.07170.92970.534713.1730.8880
    Notes: K—Release kinetic constant; n—Diffusional exponent characteristic to describe the release mechanism; R2—Coefficient of association.
    下载: 导出CSV
  • [1] ZHAO M, ZHOU H, CHEN L, et al. Carboxymethyl chitosan grafted trisiloxane surfactant nanoparticles with pH sensitivity for sustained release of pesticide[J]. Carbohydrate Polymers,2020,243:116433. doi: 10.1016/j.carbpol.2020.116433
    [2] MICHALIK R, WANDZIK I. A mini-review on chitosan-based hydrogels with potential for sustainable agricultural applications[J]. Polymers, 2020, 12(10): 2425.
    [3] VAKILI M, RAFATULLAH M, SALAMATINIA B, et al. Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review[J]. Carbohydrate Polymers,2014,113:115-130. doi: 10.1016/j.carbpol.2014.07.007
    [4] QU B, LUO Y C. Chitosan-based hydrogel beads: Preparations, modifications and applications in food and agriculture sectors-A review[J]. International Journal of Biologi-cal Macromolecules,2020,152:437-448. doi: 10.1016/j.ijbiomac.2020.02.240
    [5] LZA B, YW B, ZL A, et al. Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres[J]. Journal of Hazardous Materials,2009,161(2-3):995-1002. doi: 10.1016/j.jhazmat.2008.04.078
    [6] MONVISADE P, SIRIPHANNON P. Chitosan intercalated montmorillonite: Preparation, characterization and cationic dye adsorption[J]. Applied Clay Science,2009,42(3-4):427-431. doi: 10.1016/j.clay.2008.04.013
    [7] FENG D, BAI B, WANG H, et al. Enhanced mechanical stability and sensitive swelling performance of chitosan/yeast hybrid hydrogel beads[J]. New Journal of Chemistry,2016,40(4):3350-3362. doi: 10.1039/C5NJ02404H
    [8] OMIDI S, PIRHAYATI M, KAKANEJADIFARD A. Co-delivery of doxorubicin and curcumin by a pH-sensitive, injectable, and in situ hydrogel composed of chitosan, graphene, and cellulose nanowhisker[J]. Carbohydrte Polymers,2020,231:115745. doi: 10.1016/j.carbpol.2019.115745
    [9] WANG Y, LIU S, YU W. Functionalized graphene oxide-reinforced chitosan hydrogel as biomimetic dressing for wound healing[J]. Macromol Biosci,2021,21(4):e2000432. doi: 10.1002/mabi.202000432
    [10] ZHANG L, BAI B, HU N, et al. Efficient 3D-interfacial solar steam generation enabled by photothermal nanodiamonds paint-coat with optimized heat management[J]. Applied Thermal Engineering,2020,171:115059. doi: 10.1016/j.applthermaleng.2020.115059
    [11] MEI M, BAI B, ZHENG D, et al. Novel fabrication of a yeast biochar-based photothermal-responsive platform for controlled imidacloprid release[J]. RSC Advances,2021,11(32):19395-19405. doi: 10.1039/D1RA02143E
    [12] ŌSAWA E. Monodisperse single nanodiamond particulates[J]. Pure and Applied Chemistry,2008,80(7):1365-1379. doi: 10.1351/pac200880071365
    [13] ZHENG D, BAI B, XU X, et al. Fabrication of detonation nanodiamond@sodium alginate hydrogel beads and their performance in sunlight-triggered water release[J]. RSC Advances,2019,9(48):27961-27972. doi: 10.1039/C9RA03914G
    [14] FRICK E M, STRADER L C. Roles for IBA-derived auxin in plant development[J]. Journal of Experimental Botany,2018,69(2):169-177. doi: 10.1093/jxb/erx298
    [15] ZHENG D, BAI B, HE Y, et al. Synthesis and characterization of dopamine-modified Ca-alginate/poly(N-isopropylacrylamide) microspheres for water retention and multi-responsive controlled release of agrochemicals[J]. International Journal of Biological Macromolecules,2020,160:518-530. doi: 10.1016/j.ijbiomac.2020.05.234
    [16] ZHENG D, BAI B, ZHAO H, et al. Stimuli-responsive Ca-alginate-based photothermal system with enhanced foliar adhesion for controlled pesticide release[J]. Colloids Surfaces B: Biointerfaces,2021,207:112004. doi: 10.1016/j.colsurfb.2021.112004
    [17] LIU Y, SUI Y, LIU C, et al. A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing[J]. Carbohydrate Polymers,2018,188:27-36. doi: 10.1016/j.carbpol.2018.01.093
    [18] WANG L, LI B, XU F, et al. UV-crosslinkable and thermo-responsive chitosan hybrid hydrogel for NIR-triggered localized on-demand drug delivery[J]. Carbohydrate Polymers,2017,174:904-914. doi: 10.1016/j.carbpol.2017.07.013
    [19] SONG R, ZHENG J, LIU Y, et al. A natural cordycepin/chitosan complex hydrogel with outstanding self-healable and wound healing properties[J]. International Journal of Biological Macromolecules,2019,134:91-99. doi: 10.1016/j.ijbiomac.2019.04.195
    [20] CHEN X, ZHOU J, ZHANG Y, et al. Polydopamine-modified polyaniline/nanodiamond ternary hybrids with brain fold-like surface for enhanced dual band electromagnetic absorption[J]. ACS Applied Polymer Materials,2019,1(3):405-413. doi: 10.1021/acsapm.8b00127
    [21] NIU B, JIA J, WANG H, et al. In vitro and in vivo release of diclofenac sodium-loaded sodium alginate/carboxymethyl chitosan-ZnO hydrogel beads[J]. International Journal of Biological Macromolecules,2019,141:1191-1198. doi: 10.1016/j.ijbiomac.2019.09.059
    [22] LIU P, JIANG L, ZHU L, et al. Novel covalently cross-linked attapulgite/poly(acrylic acid-co-acrylamide) hybrid hydrogels by inverse suspension polymerization: Synthesis optimization and evaluation as adsorbents for toxic heavy metals[J]. Industrial & Engineering Chemistry Research,2014,53(11):4277-4285.
    [23] SIANGSANOH C, UMMARTYOTIN S, SATHIRAKUL K, et al. Fabrication and characterization of triple-responsive composite hydrogel for targeted and controlled drug delivery system[J]. Journal of Molecular Liquids,2018,256:90-99. doi: 10.1016/j.molliq.2018.02.026
    [24] REINA G, ORLANDUCCI S, CAIRONE C, et al. Rhodamine/nanodiamond as a system model for drug carrier[J]. Journal of Nanoscience and Nanotechnology,2015,15(2):1022-1029. doi: 10.1166/jnn.2015.9736
    [25] NAZLI A B, AÇIKEL Y S. Loading of cancer drug resveratrol to pH-sensitive, smart, alginate-chitosan hydrogels and investigation of controlled release kinetics[J]. Journal of Drug Delivery Science and Technology,2019,53(8):101199.
    [26] DONG X, WEI C, LIANG J, et al. Thermosensitive hydrogel loaded with chitosan-carbon nanotubes for near infrared light triggered drug delivery[J]. Colloids and Surfaces B: Biointerfaces,2017,154:253-262. doi: 10.1016/j.colsurfb.2017.03.036
    [27] WU W, WAN M, FEI Q, et al. PDA@Ti3C2Tx as a novel carrier for pesticide delivery and its application in plant protection: NIR-responsive controlled release and sustained antipest activity[J]. Pest Management Science,2021,77(11):4960-4970. doi: 10.1002/ps.6538
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  810
  • HTML全文浏览量:  405
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-27
  • 修回日期:  2022-05-17
  • 录用日期:  2022-06-03
  • 网络出版日期:  2022-06-16
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回