留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化石墨烯对多壁碳纳米管掺配水泥砂浆强度、压敏性能与微观结构的影响

杨森 王远贵 齐孟 魏致强 石家宜 詹达富 王琴 袁小亚

杨森, 王远贵, 齐孟, 等. 氧化石墨烯对多壁碳纳米管掺配水泥砂浆强度、压敏性能与微观结构的影响[J]. 复合材料学报, 2022, 39(5): 2340-2355. doi: 10.13801/j.cnki.fhclxb.20210716.005
引用本文: 杨森, 王远贵, 齐孟, 等. 氧化石墨烯对多壁碳纳米管掺配水泥砂浆强度、压敏性能与微观结构的影响[J]. 复合材料学报, 2022, 39(5): 2340-2355. doi: 10.13801/j.cnki.fhclxb.20210716.005
YANG Sen, WANG Yuangui, QI Meng, et al. Effect of graphene oxide on mechanical properties, piezoresistivity and microstructure of cement mortar blended with multi-walled carbon nanotubes[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2340-2355. doi: 10.13801/j.cnki.fhclxb.20210716.005
Citation: YANG Sen, WANG Yuangui, QI Meng, et al. Effect of graphene oxide on mechanical properties, piezoresistivity and microstructure of cement mortar blended with multi-walled carbon nanotubes[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2340-2355. doi: 10.13801/j.cnki.fhclxb.20210716.005

氧化石墨烯对多壁碳纳米管掺配水泥砂浆强度、压敏性能与微观结构的影响

doi: 10.13801/j.cnki.fhclxb.20210716.005
基金项目: 国家自然科学基金(51402030);重庆市基础科学与前沿技术研究专项基金(cstc2017jcyjBX0028);重庆市教育委员会科学技术研究项目(KJZD-K201800703)
详细信息
    通讯作者:

    袁小亚,博士,教授,硕士生导师,研究方向为纳米复合材料、建筑功能材料、高性能水泥混凝土等领域 E-mail:yuanxy@cqjtu.cn

  • 中图分类号: TU528

Effect of graphene oxide on mechanical properties, piezoresistivity and microstructure of cement mortar blended with multi-walled carbon nanotubes

  • 摘要: 多壁碳纳米管(MWCNTs)对水泥基材料可起到增强增韧的作用。但MWCNTs易在水泥浆体中团聚,目前国内外对如何深化氧化石墨烯(GO)在水泥浆体中分散MWCNTs的报道较为罕见。采用吸光度试验考察了木质素磺酸钠(MN)存在时,GO对MWCNTs在模拟水泥水化孔隙液的饱和氢氧化钙溶液(CH)中分散性能的影响,并研究了GO对MWCNTs掺配砂浆力学性能、电热性能、电阻率及压敏性的影响。吸光度测试表明MN、GO、MWCNTs质量比为3∶1∶9时,MWCNTs分散达到最佳,力学性能测试表明当MWCNTs、GO最佳掺量分别为0.45wt%、0.05wt%时,28天抗折抗压强度比相同MWCNTs掺量的试件分别提高了27.3%、20.9%,电阻率降低了18.2%,电阻变化率提高了72.6%。微观结构测试表明GO能进一步促进MWCNTs在水泥基材料中分散,促进水泥水化进程,密实了水泥石结构,对MWCNT掺配砂浆强度有协同增长作用,提高了压敏性能。本研究采用GO分散MWCNT的方法可扩展到其他碳基纳米增强剂,并为发展自感知智能化水泥基材料提供了一种新的途径。

     

  • 图  1  四电极布置(左)及压敏性加载装置(右)

    Figure  1.  Four electrode arrangement (left) and pressure sensitive loading device (right)

    图  2  GO、MN、MWCNTs溶液的紫外可见吸收光谱

    Figure  2.  UV-visible absorption spectra of GO, MN, MWCNTs solutions

    图  3  MN含量对GO在饱和CH溶液中吸光度的影响

    Figure  3.  Effect of content of MN on the absorbance of GO in saturated CH solution

    图  4  不同GO溶液体系的Zeta电位图

    Figure  4.  Zeta potential diagram of different GO solutions

    图  5  GO掺量对MWCNTs在饱和CH溶液中吸光度的影响

    Figure  5.  Effect of GO content on the absorbance of MWCNTs in saturated CH solution

    图  6  不同GO/MWCNTs掺量的28天胶砂SEM图像:(a) Blank;(b) 0.45%MNCNTs/C;(c) 0.45%MWCNTs-GO/C;(d) 0.45%MWCNTs-MN/C;(e) 0.05%GO/C;(f) 0.05%GO-MN/C;(g) 0.45%MWCNTs-MN-GO/C

    Figure  6.  SEM images of mortars with different amounts of GO/MWCNTs for 28 days: (a) Blank; (b) 0.45%MNCNTs/C; (c) 0.45%MWCNTs-GO/C; (d) 0.45%MWCNTs-MN/C; (e) 0.05%GO/C; (f) 0.05%GO-MN/C; (g) 0.45%MWCNTs-MN-GO/C

    图  7  不同含量GO/MWCNTs的3天砂浆XRD图谱

    Figure  7.  XRD spectra of mortars with different amounts of GO/MWCNTs for 3 days ((a) Blank; (b) 0.045%MWCNTs/C; (c) 0.05%GO/C; (d) 0.045%MWCNTs-MN/C; (e) 0.05%GO-MN/C; (f) 0.045%MWCNTs-GO/C; (g) 0.045%MWCNTs-MN-GO/C)

    图  8  GO对MWCNTs掺配砂浆电阻率的影响

    Figure  8.  Influence of GO on the resistivity of the mortars blended MWCNTs

    图  9  GO掺量对MWCNTs掺配砂浆电热性能的影响

    Figure  9.  Effect of GO content on electrothermal property of mortar blended with MWCNTs

    图  10  不同掺量MWCNTs 的砂浆压敏曲线(a)、不同掺量GO对MWCNTs掺配砂浆压敏性的影响(b)

    Figure  10.  Piezoresistivity curves of mortar with different contents of MWCNTs (a), and effect of GO content on the piezoresistivity of cement mortar blended with MWCNTs (b)

    表  1  水泥物理性能

    Table  1.   Physical properties of the cement

    Water requirement
    of normal consistency/%
    Specific surface area/(m2·kg−1)
    Density/
    (g·cm−3)

    Setting time/
    min
    Flexural strength/
    MPa
    Compression strength/
    MPa
    InitialFinal3 days28 days3 days28 days
    27.8 351 3.15 136 224 5.1 6.3 25.6 43.4
    下载: 导出CSV

    表  2  多壁碳纳米管(MWCNTs)性能指标

    Table  2.   Performance indicators of multi-walled carbon nanotubes (MWCNTs)

    Purity/%Length/μmSpecific surface area/(m2·g−1)Diameter/nm
    98.5~502458-20
    下载: 导出CSV

    表  3  含有不同含量木质素磺酸钠(MN)的饱和氢氧化钙(CH)溶液的配制

    Table  3.   Preparation of saturated calcium hydroxide solution (CH) with different contents of sodium lignosulfonate (MN)

    SampleWater/mLCa(OH)2/gPC/mLGO/mLMN/g
    X1 90 0.16 0.05 10 0
    X2 90 0.16 0.05 10 1∶1
    X3 90 0.16 0.05 10 2∶1
    X4 90 0.16 0.05 10 3∶1
    X5 90 0.16 0.05 10 4∶1
    X6 90 0.16 0.05 10 5∶1
    Notes: ①—Content of MN is its ratio to GO; PC—Polycarboxylate; GO—Graphene oxide.
    下载: 导出CSV

    表  4  用于Zeta电位测试的GO溶液组成

    Table  4.   Composition of GO solution for Zeta potential test

    SampleWater/mLCa(OH)2/gGO/mLPC/mLMN
    Y1 90 0.16 10 0 0
    Y2 90 0.16 10 0.05 0
    Y3 90 0.16 10 0.05 1∶1
    Y4 90 0.16 10 0.05 2∶1
    Y5 90 0.16 10 0.05 3∶1
    Y6 90 0.16 10 0.05 4∶1
    Y7 90 0.16 10 0.05 5∶1
    Note: ①—Content of MN is its mass ratio to GO.
    下载: 导出CSV

    表  5  含有不同含量GO的饱和CH溶液的配制

    Table  5.   Preparation of saturated CH solution with different contents of GO

    SampleWater/mLCa(OH)2/gPC/mLMWCNTs/gMNGO
    Z1 100 0.16 0.05 0.01 0 0
    Z2 100 0.16 0.05 0.01 3∶1 9∶1
    Z3 100 0.16 0.05 0.01 3∶1 5∶1
    Z4 100 0.16 0.05 0.01 3∶1 3∶1
    Z5 100 0.16 0.05 0.01 3∶1 1∶1
    Z6 100 0.16 0.05 0.01 3∶1 1∶3
    Z7 100 0.16 0.05 0.01 3∶1 1∶5
    Z8 100 0.16 0.05 0.01 3∶1 1∶9
    Z9 100 0.16 0.05 0.01 0 1∶9
    Z10 100 0.16 0.05 0.01 3∶1 0
    Notes: ①—Content of MN is its mass ratio to GO; ②—Content of GO is its mass ratio to MWCNTs.
    下载: 导出CSV

    表  6  不同GO掺量的水泥砂浆配合比

    Table  6.   Mix ratios of cement mortars with different contents of GO

    SampleMN/%GO/%MWCNTs/%C/gS/gW/gPC/g
    Blank 0 0 0 450 1350 165 2.7
    0.45%MWCNTs-GO/C 0 0.05 0.45 450 1350 165 2.7
    0.45%MWCNTs-MN/C 0.15 0 0.45 450 1350 165 2.7
    0.15%MN/C 0.15 0 0 450 1350 165 2.7
    0.05%GO/C 0 0.05 0 450 1350 165 2.7
    0.05%GO-MN/C 0.15 0.05 0 450 1350 165 2.7
    0.09%MWCNTs-MN-GO/C 0.03 0.01 0.09 450 1350 165 2.7
    0.27%MWCNTs-MN-GO/C 0.09 0.03 0.27 450 1350 165 2.7
    0.45%MWCNTs-MN-GO/C 0.15 0.05 0.45 450 1350 165 2.7
    0.63%MWCNTs-MN-GO/C 0.21 0.07 0.63 450 1350 165 2.7
    0.81%MWCNTs-MN-GO/C 0.27 0.09 0.81 450 1350 165 2.7
    0.09%MWCNTs/C 0 0 0.09 450 1350 165 2.7
    0.27%MNCNTs/C 0 0 0.27 450 1350 165 2.7
    0.45%MNCNTs/C 0 0 0.45 450 1350 165 2.7
    0.63%MNCNTs/C 0 0 0.63 450 1350 165 2.7
    0.81%MNCNTs/C 0 0 0.81 450 1350 165 2.7
    Notes: ①—Mass ratio to cement; C—Cement; S—Sand; W—Water.
    下载: 导出CSV

    表  7  GO含量对MWCNTs掺配胶砂抗折抗压强度的影响

    Table  7.   Effect of GO content on the flexural strength and compressive strength of mortar blended with MWCNTs

    Sample
    Flexural strength (MPa)/Increase rate (%)Compressive strength (MPa)/Increase rate (%)
    3 days28 days3 days28 days
    Blank 5.5/0 6.8/0 27.5/0 44.5/0
    0.45%MWCNTs-GO/C 8.2/15.5 9.8/11.4 38.5/5.5 63.5/10.8
    0.45%MWCNTs-MN/C 7.7/8.5 9.5/8.0 38.3/4.9 61.5/7.3
    0.15%MN/C 5.1/−7.3 6.2/−8.8 25.3/−8.0 39.5/−11.2
    0.05%GO/C 6.0/9.1 7.6/11.8 32.1/16.7 53.6/20.4
    0.05%GO-MN/C 6.4/16.4 8.9/30.9 34.8/26.5 58.6/31.7
    0.09%MWCNTs-MN-GO/C 6.5/12.1 7.8/6.8 34.4/21.1 55.8/15.1
    0.27%MWCNTs-MN-GO/C 7.4/13.8 9.1/19.7 37.5/18.7 58.6/14.5
    0.45%MWCNTs-MN-GO/C 8.5/19.7 11.2/27.3 42.5/16.4 69.3/20.9
    0.63%MWCNTs-MN-GO/C 8.1/8.0 9.8/4.3 41.2/9.0 65.4/9.9
    0.81%MWCNTs-MN-GO/C 6.4/4.9 8.2/5.1 32.1/7.7 54.1/9.7
    0.09%MWCNTs/C 5.8/5.5 7.3/7.4 28.4/3.3 48.5/9.0
    0.27%MNCNTs/C 6.5/18.2 7.6/11.8 31.6/14.9 51.2/15.1
    0.45%MNCNTs/C 7.1/29.1 8.8/29.4 36.5/32.7 57.3/28.8
    0.63%MNCNTs/C 7.6/38.2 9.4/38.2 37.8/37.5 59.5/33.7
    0.81%MNCNTs/C 6.1/10.9 7.8/14.7 29.8/8.4 49.3/10.8
    Notes: ①—Control group is blank; ②—Control group is 0.09%MWCNTs/C-0.81%MNCNTs/C respectively which contains the same MWCNTs content.
    下载: 导出CSV
  • [1] SILVESTRE J, SILVESTRE N, DE BRITO J. Review on concrete nanotechnology[J]. European Journal of Environmental and Civil Engineering,2015,20(4):455-485.
    [2] CHUAH S, PAN Z, SANJAYAN J G, et al. Nano reinforced cement and concrete composites and new perspective from graphene oxide[J]. Construction & Building Materials,2014,73:113-124.
    [3] DIMOV D, AMIT I, GORRIE O, et al. Ultrahigh perfor-mance nanoengineered graphene-concrete composites for multifunctional applications[J]. Advanced Functional Materials,2018,28(23):1705183.
    [4] 苗生龙, 周样梅, 陈奎宇, 等. 纳米材料对混凝土性能影响研究进展[J]. 混凝土与水泥制品, 2019(4):20-23.

    MIAO Shenglong, ZHOU Yangmei, CHEN Kuiyu, et al. Research progress on the influence of nanomaterials on concrete properties[J]. Concrete and Cement Products,2019(4):20-23(in Chinese).
    [5] 杨新亚, 张勇. 氮化硼/碳纳米管/溴化丁基橡胶复合材料的力学和导热性能研究[J]. 化工新型材料, 2018, 46(3):70-74.

    YANG Xinya, ZHANG Yong. Study on the mechanical and thermal properties of boron nitride/carbon nanotube/bromobutyl rubber composites[J]. New Chemical Materials,2018,46(3):70-74(in Chinese).
    [6] 李相国, 明添, 刘卓霖, 等. 碳纳米管水泥基复合材料耐久性及力学性能研究[J]. 硅酸盐通报, 2018, 37(5):1497-1502.

    LI Xiangguo, MING Tian, LIU Zhuolin, et al. Research on durability and mechanical properties of carbon nanotube cement-based composites[J]. Bulletin of the Chinese Ceramic Society,2018,37(5):1497-1502(in Chinese).
    [7] 疏金成, 曹茂盛. 石墨烯基电磁功能材料[J]. 表面技术, 2020, 49(2):40-51.

    SHU Jincheng, CAO Maosheng. Graphene-based electromagnetic functional materials[J]. Surface Technology,2020,49(2):40-51(in Chinese).
    [8] CAO M, WANG X, ZHANG M, et al. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials[J]. Advanced Functional Materials,2019,29(25):1-54.
    [9] 王希晰, 曹茂盛. 特色研究报告: 低维电磁功能材料研究进展[J]. 表面技术, 2020, 49(2):18-28.

    WANG Xixi, CAO Maosheng. Featured research report: Research progress of low-dimensional electromagnetic functional materials[J]. Surface Technology,2020,49(2):18-28(in Chinese).
    [10] 刘金涛, 黄存旺, 杨杨, 等. 三维石墨烯-碳纳米管/水泥净浆的压敏性能 [J]. 复合材料学报, 2022, 39(1): 313-321.

    LIU Jintao, HUANG Cunwang, YANG Yang, et al. Pressure-sensitive properties of three-dimensional graphene-carbon nanotubes/cement paste [J]. Acta Materiae Compositae Sinica, 2022, 39(1): 313-321(in Chinese).
    [11] SHAO H, CHEN B, LI B, et al. Influence of dispersants on the properties of CNTs reinforced cement-based materials[J]. Construction & Building Materials,2017,131:186-194.
    [12] WANG Y, CHUNG D D L. Effect of the fringing electric field on the apparent electric permittivity of cement-based materials[J]. Composites Part B: Engineering,2017,126:192-201. doi: 10.1016/j.compositesb.2017.05.080
    [13] ZHAO Z, QI T, ZHOU W, et al. A review on the properties, reinforcing effects, and commercialization of nano-materials for cement-based materials[J]. Nanotechnology Reviews,2020,9(1):303-322. doi: 10.1515/ntrev-2020-0023
    [14] KORAYEM A H, TOURANI N, ZAKERTABRIZI M, et al. A review of dispersion of nanoparticles in cementitious matrices: Nanoparticle geometry perspective[J]. Construction and Building Materials,2017,153:346-357. doi: 10.1016/j.conbuildmat.2017.06.164
    [15] ZHOU C, LI F, HU J, et al. Enhanced mechanical properties of cement paste by hybrid graphene oxide/carbon nano-tubes[J]. Construction and Building Materials,2017,134:336-345. doi: 10.1016/j.conbuildmat.2016.12.147
    [16] JUNG M, LEE Y S, HONG S G, et al. Carbon nanotubes (CNTs) in ultra-high performance concrete (UHPC): Dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE)[J]. Cement and Concrete Research,2020,131:106017.
    [17] PARVEEN S, RANA S, FANGUEIRO R, et al. Microstructure and mechanical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique[J]. Cement and Concrete Research,2015,73:215-227. doi: 10.1016/j.cemconres.2015.03.006
    [18] 黎恒杆, 王玉林, 罗昊, 等. 多壁碳纳米管分散性对水泥基材料导电性能和电热特性的影响[J]. 硅酸盐通报, 2020, 39(11):3438-3443.

    LI Henggan, WANG Yulin, LUO Hao, et al. The effect of the dispersibility of multi-walled carbon nanotubes on the electrical conductivity and electrothermal properties of cement-based materials[J]. Bulletin of the Chinese Ceramic Society,2020,39(11):3438-3443(in Chinese).
    [19] LU Z, HOU D, MENG L, et al. Mechanism of cement paste reinforced by graphene oxide/carbon nanotubes compo-sites with enhanced mechanical properties[J]. RSC Advances,2015,5(122):100598-100605. doi: 10.1039/C5RA18602A
    [20] 程志海, 杨森, 袁小亚. 石墨烯及其衍生物掺配水泥基材料研究进展[J]. 复合材料学报, 2021, 38(2):339-360.

    CHENG Zhihai, YANG Sen, YUAN Xiaoya. Research progress of graphene and its derivatives blending cement-based materials[J]. Acta Materiae Compositae Sinica,2021,38(2):339-360(in Chinese).
    [21] 杨凌俊, 袁小亚. 氧化石墨烯复掺石墨烯对水泥砂浆力学性能的提升及机理研究[J]. 功能材料, 2019, 50(12):12089-12096.

    YANG Lingjun, YUAN Xiaoya. The improvement of the mechanical properties of cement mortar and the mecha-nism of graphene oxide mixed with graphene[J]. Functional Materials,2019,50(12):12089-12096(in Chinese).
    [22] 袁小亚, 曾俊杰, 牛佳伟, 等. 不同减水剂对氧化石墨烯掺配水泥胶砂力学性能及微观结构的影响[J]. 功能材料, 2018, 49(10):10184-10189. doi: 10.3969/j.issn.1001-9731.2018.10.032

    YUAN Xiaoya, ZENG Junjie, NIU Jiawei, et al. Effects of different water reducing agents on the mechanical properties and microstructure of graphene oxide blended cement mortars[J]. Functional Materials,2018,49(10):10184-10189(in Chinese). doi: 10.3969/j.issn.1001-9731.2018.10.032
    [23] 袁小亚, 杨雅玲, 周超, 等. 氧化石墨烯改性水泥砂浆力学性能及微观机理研究[J]. 重庆交通大学学报(自然科学版), 2017, 36(12):36-42.

    YUAN Xiaoya, YANG Yaling, ZHOU Chao, et al. Study on the mechanical properties and micro-mechanism of graphene oxide modified cement mortar[J]. Journal of Chongqing Jiaotong University (Natural Science Edition),2017,36(12):36-42(in Chinese).
    [24] 杨雅玲, 袁小亚, 沈旭, 等. 氧化石墨烯改性水泥砂浆耐腐蚀性能的研究[J]. 功能材料, 2017, 48(5):5144-5148.

    YANG Yaling, YUAN Xiaoya, SHEN Xu, et al. Research on the corrosion resistance of graphene oxide modified cement mortar[J]. Functional Materials,2017,48(5):5144-5148(in Chinese).
    [25] KAI M F, ZHANG L W, LIEW K M. Graphene and graphene oxide in calcium silicate hydrates: Chemical reactions, mechanical behavior and interfacial sliding[J]. Carbon,2019,146:181-193. doi: 10.1016/j.carbon.2019.01.097
    [26] WAN H, ZHANG Y. Interfacial bonding between graphene oxide and calcium silicate hydrate gel of ultra-high performance concrete[J]. Materials and Structures,2020(53):34. doi: 10.1617/s11527-020-01467-y
    [27] ZHAO L, GUO X, SONG L, et al. An intensive review on the role of graphene oxide in cement-based materials[J]. Construction and Building Materials,2020,241:117939. doi: 10.1016/j.conbuildmat.2019.117939
    [28] LI X, LIU Y M, LI W G, et al. Effects of graphene oxide agglomerates on workability, hydration, microstructure and compressive strength of cement paste[J]. Construction and Building Materials,2017,145:402-410. doi: 10.1016/j.conbuildmat.2017.04.058
    [29] QIU L, YANG X, GOU X, et al. Dispersing carbon nano-tubes with graphene oxide in water and synergistic effects between graphene derivatives[J]. Chemistry,2010,16(35):10653-10658. doi: 10.1002/chem.201001771
    [30] 中国国家标准化管理委员会(标准制定单位). 水泥胶砂强度检验方法: GB/T17671—1999[S]. 北京: 中国标准出版社, 2004.

    Standardization Administration of the People’s Republic of China. Cement mortar strength inspection method: GB/T17671—1999[S]. Beijing: China Standards Press, 2004(in Chinese).
    [31] YUAN X, NIU J, ZENG J, et al. Cement-induced coagulation of aqueous graphene oxide with ultrahigh capacity and high rate behavior[J]. Nanomaterials,2018,8(8):574.
    [32] YANG K, CHEN B, ZHU X, et al. Aggregation, adsorption, and morphological transformation of graphene oxide in aqueous solutions containing different metal cations[J]. Environmental Science & Technology,2016,50(20):11066-11075.
    [33] 黎恒杆, 王玉林, 罗昊, 等. 多壁碳纳米管白水泥复合材料力学性能与电学性能试验研究[J]. 硅酸盐通报, 2019, 38(9):2808-2813.

    LI Henggan, WANG Yulin, LUO Hao, et al. Experimental study on mechanical and electrical properties of multi-walled carbon nanotube white cement composites[J]. Bulletin of the Chinese Ceramic Society,2019,38(9):2808-2813(in Chinese).
    [34] NAQI A, ABBAS N, ZAHRA N, et al. Effect of multi-walled carbon nanotubes (MWCNTs) on the strength development of cementitious materials[J]. Journal of Materials Research and Technology,2018,8(1):1203-1211.
    [35] LV S, HU H, HOU Y, et al. Investigation of the effects of polymer dispersants on dispersion of GO nanosheets in cement composites and relative microstructures/perfor-mances[J]. Nanomaterials (Basel),2018,8(12):1-18.
    [36] LV S H, DENG L J, YANG W Q, et al. Fabrication of polycarboxylate/graphene oxide nanosheet composites by copolymerization for reinforcing and toughening cement composites[J]. Cement and Concrete Composites,2016,66:1-9. doi: 10.1016/j.cemconcomp.2015.11.007
    [37] 袁小亚, 高军, 王远贵, 等. 氧化石墨烯分散方式及其对水泥砂浆力学性能的影响[J]. 混凝土与水泥制品, 2020(8):18-22, 26.

    YUAN Xiaoya, GAO Jun, WANG Yuangui, et al. Graphene oxide dispersion method and its influence on the mechanical properties of cement mortar[J]. Concrete and Cement Products,2020(8):18-22, 26(in Chinese).
    [38] BOGAS J A, HAWREEN A, OLHERO S, et al. Selection of dispersants for stabilization of unfunctionalized carbon nano-tubes in high pH aqueous suspensions: Application to cementitious matrices[J]. Applied Surface Science,2019,463:169-181. doi: 10.1016/j.apsusc.2018.08.196
    [39] DU Y, YANG J, SKARIAH THOMAS B, et al. Hybrid graphene oxide/carbon nanotubes reinforced cement paste: An investigation on hybrid ratio[J]. Construction and Building Materials,2020,261:119815.
    [40] 陈骞, 耿瑶, 白帆, 等. 三种碳基纳米材料对水泥砂浆力学性能的影响[J]. 材料科学与工程学报, 2018, 36(6):964-969.

    CHEN Qian, GENG Yao, BAI Fan, et al. Effects of three carbon-based nanomaterials on the mechanical properties of cement mortar[J]. Journal of Materials Science and Engi-neering,2018,36(6):964-969(in Chinese).
    [41] DU Y, YANG J, SKARIAH THOMAS B, et al. Influence of hybrid graphene oxide/carbon nanotubes on the mechanical properties and microstructure of magnesium potassium phosphate cement paste[J]. Construction and Building Materials,2020,260:120449.
    [42] 张迪, 陆富龙, 梁颖晶. 碳纳米管对水泥力学性能及耐久性的影响研究[J]. 混凝土, 2019, 361(11):15-19, 27. doi: 10.3969/j.issn.1002-3550.2019.11.004

    ZHANG Di, LU Fulong, LIANG Yingjing. The effect of carbon nanotubes on the mechanical properties and durabi-lity of cement[J]. Concrete,2019,361(11):15-19, 27(in Chinese). doi: 10.3969/j.issn.1002-3550.2019.11.004
    [43] 吕生华, 张佳, 罗潇倩, 等. 氧化石墨烯/水泥基复合材料的微观结构和性能[J]. 材料研究学报, 2018, 32(3):233-240. doi: 10.11901/1005.3093.2016.679

    LV Shenghua, ZHANG Jia, LUO Xiaoqian, et al. Microstructure and properties of graphene oxide/cement-based composites[J]. Chinese Journal of Materials Research,2018,32(3):233-240(in Chinese). doi: 10.11901/1005.3093.2016.679
    [44] 吕生华, 张佳, 朱琳琳, 等. 氧化石墨烯对水泥基复合材料微观结构的调控作用及对抗压抗折强度的影响[J]. 化工学报, 2017, 68(6):2585-2595.

    LV Shenghua, ZHANG Jia, ZHU Linlin, et al. The control effect of graphene oxide on the microstructure of cement-based composites and the influence of compressive and flexural strength[J]. CIESC Journal,2017,68(6):2585-2595(in Chinese).
    [45] LIN C, WEI W, HU Y H. Catalytic behavior of graphene oxide for cement hydration process[J]. Journal of Physics and Chemistry of Solids,2016,89:128-133. doi: 10.1016/j.jpcs.2015.11.002
    [46] FOLDYNA J, FOLDYNA V, ZELEŇÁK M. Dispersion of carbon nanotubes for application in cement composites[J]. Procedia Engineering,2016,149:94-99. doi: 10.1016/j.proeng.2016.06.643
    [47] 罗素蓉, 李欣, 林伟毅, 等. 氧化石墨烯分散方式对水泥基材料性能的影响[J]. 硅酸盐通报, 2020, 39(3):677-684.

    LUO Surong, LI Xin, LIN Weiyi, et al. The effect of graphene oxide dispersion on the properties of cement-based materials[J]. Bulletin of the Chinese Ceramic Society,2020,39(3):677-684(in Chinese).
    [48] KAUR R, KOTHIYAL N C. Positive synergistic effect of superplasticizer stabilized graphene oxide and functiona-lized carbon nanotubes as a 3-D hybrid reinforcing phase on the mechanical properties and pore structure refinement of cement nanocomposites[J]. Construction and Building Materials,2019,222:358-370. doi: 10.1016/j.conbuildmat.2019.06.152
    [49] HAN B, DING S, XUN Y. Intrinsic self-sensing concrete and structures: A review[J]. Measurement,2015,59:110-128. doi: 10.1016/j.measurement.2014.09.048
    [50] BING C, LIU J, WU K. Electrical responses of carbon fiber reinforced cementitious composites to monotonic and cyclic loading[J]. Cement & Concrete Research,2005,35(11):2183-2191.
    [51] YI H, NING L, MA Y, et al. The influence of single-walled carbon nanotube structure on the electromagnetic inter-ference shielding efficiency of its epoxy composites[J]. Carbon,2007,45(8):1614-1621. doi: 10.1016/j.carbon.2007.04.016
    [52] CAO M S, SONG W L, HOU Z L, et al. The effects of tempe-rature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites[J]. Carbon,2010,48(3):788-796. doi: 10.1016/j.carbon.2009.10.028
    [53] 林立. 氧化石墨烯/碳纳米管水泥基复合材料性能研究[D]. 长沙: 湖南大学, 2018.

    LIN Li. Research on properties of graphene oxide/carbon nanotube cement-based composites[D]. Changsha: Hu-nan University, 2018(in Chinese).
    [54] 徐永芝. 碳纳米管的功能化及其对PMMA骨水泥热学和力学性能影响的研究分析[D]. 济南: 山东大学, 2015.

    XU Yongzhi. The functionalization of carbon nanotubes and its influence on the thermal and mechanical properties of PMMA bone cement[D]. Jinan: Shandong University, 2015(in Chinese).
    [55] 孙胜伟. 多层石墨烯复合水泥基材料的多功能与智能特性[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    SUN Shengwei. Multi-functional and intelligent properties of multi-layer graphene composite cement-based materials[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).
    [56] CAO M S, SONG W L, HOU Z L, et al. The effects of tempe-rature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites[J]. Carbon-American Carbon Committee,2010,48:788-796.
    [57] 王琴, 王健, 刘伯伟, 等. 多壁碳纳米管水泥基复合材料的压敏性能研究[J]. 硅酸盐通报, 2016, 35(9):2733-2740.

    WANG Qin, WANG Jian, LIU Bowei, et al. Study on the pressure-sensitive properties of multi-walled carbon nano-tubes cement-based composites[J]. Bulletin of the Chinese Ceramic Society,2016,35(9):2733-2740(in Chinese).
    [58] 立树旺. 碳纤维改性磷酸镁水泥粘结性和压敏性研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    LI Shuwang. Study on interface bonding performance and pressure sensitivity of carbon fiber modified magnesium phosphate cement[D]. Harbin: Harbin Institute of Technology, 2020(in Chinese).
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  1036
  • HTML全文浏览量:  394
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-28
  • 修回日期:  2021-07-08
  • 录用日期:  2021-07-09
  • 网络出版日期:  2021-07-19
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回