Effect of different dimensions of ZnO on the electrical properties of MMT-SiC/EP micro-nano composites
-
摘要:
聚合物因其优异的绝缘性能被广泛应用于航天器介质中,在航天器上使用具有非线性电导特性的绝缘材料可以降低或消除高能电子积聚,防止局部击穿,造成绝缘失效。现阶段具有非线性电导特性的复合材料主要制备方式为在环氧树脂基体中加入半导电无机填料,常用的半导电无机填料有微米氧化锌和碳化硅等。但是在环氧树脂中单一的加入碳化硅颗粒对于材料非线性的调控,已经无法满足现阶段的要求。研究发现在SiC/EP微米复合材料中添加二维片层状MMT,可以有效提高复合材料的非线性系数,但是随着MMT含量的增加,复合材料的电导率逐渐下降,阈值场强逐渐增大,介电损耗逐渐增大。因此想要在MMT-SiC/EP微纳米复合材料中继续添加零维或者一维的纳米材料,通过不同维度纳米材料之间的协同效应,提高复合体系内部的界面重叠率,促进载流通道的构建,对复合材料的非线性电导特性起到调控的作用。目前,在非线性微纳米复合材料研究中,很少有将一维、二维、三维纳米材料两两混合共同加入复合材料中,探究复合材料的电学性能。因此研究不同维度之间的协同效应对于非线性电导特性及其它电学性能的影响对环氧树脂基非线性材料的理论研究和工程应用有着重要的意义。本文以环氧树脂为基体,微米SiC、二维片层状MMT、零维颗粒状ZnO、一维T-ZnOw,制备了SiC/EP微米复合材料、MMT-SiC/EP微纳米复合材料、ZnO-MMT-SiC/EP微纳米复合材料和T-ZnOw-MMT-SiC/EP微纳米复合材料。通过X射线衍射实验表征了MMT有机改性的效果。通过SEM和EDS表征了无机填料在基体中的分散和界面重叠状况。测试了复合材料的导电性、击穿和介电性能。结果表明,在MMT-SiC/EP复合体系中添加一维T-ZnOw比零维颗粒状ZnO,可以更加有效增加体系中界面重合率,更加容易在复合材料内部构成良好的载流通路,能够在有效降低复合材料的阈值场强,提高复合材料的电导率和非线性系数,使得复合材料具备优越非线性电导特性的同时,不仅可以保证击穿场强不会太低,还可以降低复合材料的相对介电常数和介质损耗角正切值。 微纳米复合材料载流子传输通道示意图 电导率 非线性系数 Abstract: Nonlinear conductivity dielectric is widely used today to solve high energy discharge problems in many fields (such as spacecraft charging and motor insulation). In this paper, we optimize the nonlinear conductivity properties and other electrical properties of the composites by continuing the addition of zero- or one-dimensional ZnO to the micro-nano composite systems containing micron SiC and montmorillonite (MMT). The layer spacing before and after the organic modification of MMT was characterized by X-ray diffractometry. The dispersion of each filler inside the composite and the interfacial state were characterized by scanning electron microscopy. Conductivity, breakdown, and dielectric spectroscopy tests were performed on the composites to investigate the pattern of influence of the dimensionality of the nanofillers on the electrical properties. The experimental results showed that the addition of one-dimensional T-ZnOw was more effective than zero-dimensional granular ZnO in the MMT-SiC/EP composite system. Thus, the same content of T-ZnOw can increase the interfacial recombination rate in the composite system and constitute the conductive pathway more effectively. Improved nonlinear conductivity properties of the composite. Moreover, T-ZnOw also ensures stable breakdown field strength of the composite material and reduces the relative permittivity and dielectric loss angle tangent values. -
表 1 复合材料试样的编号和配比
Table 1. Numbering and proportioning of composite specimens
NO. Specimen Proportion/g 1 SiC/EP 100/100 2 MMT-SiC/EP 1/100/100 3 ZnO-MMT-SiC/EP 9/1/100/100 4 T-ZnOw-MMT-SiC/EP 9/1/100/100 -
[1] WANG X, YANG J, ZHAO H, et al. Influence of moisture absorption on the DC conduction and space charge property of MgO/LDPE nanocomposite[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2014,21:1957-1964. doi: 10.1109/TDEI.2014.004334 [2] LIU C. Review of nonlinear conductivity theory research of modified composite materials[J]. IEEE Access,2019:1-1. [3] KAWASAKI T, HOSODA S, KIM JH, et al. Charge neutralization via arcing on a large solar array in the GEO plasma environment[J]. IEEE Transactions on Plasma Science,2006,34:1979-1985. doi: 10.1109/TPS.2006.881932 [4] ROBERTSON J, VARLOW B R. The use of nonlinear permittivity fillers for the purposes of stress grading within cables[J]. IEEE International Conference on Properties & Applications of Dielectric Materials,2003:1210-1213. [5] DONNELLY K, VARLOW B R. AC conductivity effects of non-linear fillers in electrical insulation[J]. IEEE 2000 Annual Report Conference on Electrical Insulation and Dielectric Phenomena,2000:132-135. [6] HAN B, GUO W, LI Z. Research on the non-linear conductivity characteristics of NANO-Sic silicone rubber composites[J] Journal of Functional Materials, 2008, 39(9): 1490-1493. [7] DIAHAM S. Nonlinear Electrical Conduction in Polymer Composites for Field Grading in High-Voltage Applications: A Review[J]. Polymers,2021:13. [8] 韩永森, 孙健, 张昕, 等. 微纳米SiC/环氧树脂复合材料的界面和非线性电导特性[J]. 复合材料学报, 2020, 37(7):1562-1570.HAN Yongsen, SUN Jian, ZHANG Xin, et al. Interface and nonlinear conduction characteristics of micro-nano SiC/epoxy composites[J]. Act Materiae Compositae Sinica,2020,37(7):1562-1570(in Chinese). [9] TAKADA T, HAYASE Y, TANAKA Y, et al. Space charge trap-ping in electrical potential well caused by permanent and induced dipoles for LDPE/MgO nanocomposite[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2008,15:152-160. doi: 10.1109/T-DEI.2008.4446746 [10] ZHANG B, GAO W, CHU P, et al. Trap-modulated carrier transport tailors the dielectric properties of alumina/epoxy nanocomposites[J]. Journal of Materials Science:Materials in Electronics,2018,29:1964-1974. doi: 10.1007/s10854-017-8107-8 [11] DU B, ZHANG J, GAO Y. Effects of TiO2 particles on surface charge of epoxy nanocomposites[J]. IEEE Transactions on Dielectrics & Electrical Insulation,2012,19:755-762. [12] TIAN F, LEI Q, WANG X, et al. Investigation of electrical properties of LDPE/ZnO nanocomposite dielectrics[J]. IEEE Transactions on Dielectrics & Electrical Insulation,2012,19:763-769. [13] LI S, YIN G, CHEN G, et al. Short-term Breakdown and Long-term Failure in Nanodielectrics: A Review[J]. IEEE Transactions on Dielectrics & Electrical Insulation,2010,17(5):1523-1535. [14] CASTELLON J, NGUYEN H N, AGNEL S, et al. Electrical properties analysis of micro and nanocomposite epoxy resin materials[J]. IEEE Transactions on Dielectrics & Electrical Insulation,2011,18(3):651-658. [15] RAMU T, NAGAMANI H. Alumina and Silica based Epoxy Nano-composites for Electrical Insulation[J]. IEEE Transactions on Dielectrics & Electrical Insulation,2014,21(1):236-243. [16] TANAKA T, MONTANARI G C, MULHAUPT R. Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications[J]. Dielectrics & Electrical Insulation IEEE Transactions on,2004,11(5):763-784. [17] TANAKA T. Dielectric Nanocomposites with Insulating Properties[J]. IEEE Transactions on Dielectrics & Electrical Insulation,2005,12(5):914-928. [18] ALI F, UGURLUG B, KAWAMURA A. Polymer nanocomposite dielectrics-the role of the interface[J]. IEEE Transactions on Dielectrics & Electrical Insulation,2005,12(4):629-643. [19] SCHMIDT D, SHAH D, GIANNELIS E P. New advances in polymer/layered silicate nanocomposites[J]. Current Opinion in Solid State and Materials Science,2002,6(3):205-212. doi: 10.1016/S1359-0286(02)00049-9 [20] 王乾宝. MMT/SiC/EP微-纳米复合材料介电性能及热学性能研究[D]. 黑龙江: 哈尔滨理工大学, 2021.WANG Qianbao. Dielectric and Thermal Properties of MMT/SiC/EP Micro/Nano Composite[D]. Heilongjiang: Harbin University Science of Technology, 2021(in Chinese). [21] 王雅芸. SiC/ZnO/EP微-纳米复合材料介电性能与热学性能研究[D]. 黑龙江: 哈尔滨理工大学, 2019.WANG Yayun. Study of dielectric and thermal properties of SiC/ZnO/EP micro-nanocomposites[D]. Heilongjiang: Harbin University Science of Technology, 2019(in Chinese). [22] DISSSADO L A, FOTHERGILL J C, WOLFE S V, et al. Weibull statistics in dielectric breakdown; theoretical basis, applications and implications[J]. IEEE Transactions on Electrical Insulation,1984(3):227-233. [23] 郭宁. 蒙脱土/环氧树脂纳米复合材料结构形态与介电性能机理研究[D]. 哈尔滨理工大学, 2014.GUO Ning. Study on the structural morphology and dielectric properties mechanism of montmorillonite/epoxy resin nanocomposites[D]. Harbin University Science of Technology, 2014 (in Chinese). [24] SINGHA S, THOMAS MJ. Dielectric Properties of Epoxy-Al2O3 Nanocomposite System for Packaging Applications[J]. Components and Packaging Technologies, IEEE Transactions on,2010,33(2):373-385. doi: 10.1109/TCAPT.2009.2033665 [25] TANAKA T, KOZAK M, FUSE N, et al. Proposal of a multi-core model for polymer nanocomposite dielectrics[J]. Dielectrics and Electrical Insulation, IEEE Transactions on,2005,12(4):669-681. doi: 10.1109/TDEI.2005.1511092 [26] TANAKA T. Interpretation of several key phenomena peculiar to nano dielectrics in terms of a multi-core model[J]. 2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena,2006:298-301. [27] JIN L I, ZHANG C, DU B, et al. Electrical Field Simulation of Epoxy Spacer with Nonlinear Conductivity for DC GIL[J]. High Voltage Engineering,2020,451:48-53. [28] 吕晓玉. 不同维度无机填料/SiC/EP复合材料的电学特性研究[D]. 黑龙江: 哈尔滨理工大学, 2022.LV Xiaoyu. Dielectric Properties of Inorganic Fillers/SiC/EP Composites with Different Dimensions[D]. Heilongjiang: Harbin University Science of Technology, 2022(in Chinese). [29] MONIRUZZAMAN M, WINEY KI. Polymer Nanocomposites Containing Carbon Nanotubes[J]. Macromolecules,2006,39(16):5194-5205. doi: 10.1021/ma060733p [30] MUEISO RM, WINEY KI. Electrical properties of polymer nanocomposites containing rod-like nanofilles[J]. Progress in Polymer Science,2015,40:63-84. doi: 10.1016/j.progpolymsci.2014.06.002 [31] XIA Y, YANG P, SUN Y, et al. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications[J]. Advanced Materials,2003,15(5):353-389. doi: 10.1002/adma.200390087 [32] 张吴欣, 李志恒, 周梅琳, 等. T-ZnOw/硅橡胶复合材料的非线性电导特性研究[J]. 材料导报, 2022, 34(12):5.ZHANG Wuxin, LI Zhiheng, ZHOU Meilin, et al. Study of nonlinear conductivity characteristics of T-ZnOw/silicone rubber composites[J]. Materials Reports,2022,34(12):5(in Chinese). [33] VOLCKER O, KOCH H. Closure to Discussion of Insulation Coordination for Gas-insulated Transmission Lines (GiL)[J]. IEEE Transactions on Power Delivery,2020,16(4):823-824. [34] POLIZOS G, TUNCER E, SAUERS I, et al. Properties of a nanodielectric cryogenic resin[J]. Applied Physics Letters,2010,96(15):338-586. [35] LIU Chenyang, CHANG Zhongting, ZHANG Xiaoquan. Preparation and Nonlinear Conductivity Modification of Doped ZnO/EP Composite Materials[J]. IEEE International Conference on the Properties and Applications of Dielectric Materials - Xi'an – China,2018:275-278. [36] 谢茜. 不同形状纳米二氧化钛-环氧复合材料的制备及电热性能研究[D]. 西安: 西安交通大学, 2017.XIE Qian. Study on Preparation and Properties of Epoxy Resin Containing Nano-Sized Titanium Dioxide with Different Shapes[D]. Xi'an: Xi'an Jiaotong University, 2017(in Chinese). [37] ALAPATI S, THOMAS MJ. Influence of nano-fillers on electrical treeing in epoxy insulation[J]. IET Science Measurement and Technology,2012,6(1):21-28. doi: 10.1049/iet-smt.2011.0046 -

计量
- 文章访问数: 131
- HTML全文浏览量: 127
- 被引次数: 0