留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偶联剂处理对碳纤维/竹展平板复合材料界面结合强度的影响

马志远 关明杰

马志远, 关明杰. 偶联剂处理对碳纤维/竹展平板复合材料界面结合强度的影响[J]. 复合材料学报, 2022, 39(0): 1-9
引用本文: 马志远, 关明杰. 偶联剂处理对碳纤维/竹展平板复合材料界面结合强度的影响[J]. 复合材料学报, 2022, 39(0): 1-9
Zhiyuan MA, Mingjie GUAN. Effect of coupling agent treatment on interfacial bonding strength of carbon fiber/flattened bamboo composite[J]. Acta Materiae Compositae Sinica.
Citation: Zhiyuan MA, Mingjie GUAN. Effect of coupling agent treatment on interfacial bonding strength of carbon fiber/flattened bamboo composite[J]. Acta Materiae Compositae Sinica.

偶联剂处理对碳纤维/竹展平板复合材料界面结合强度的影响

基金项目: 江苏省农业创新自主创新基金(CX(19)3036)
详细信息
    通讯作者:

    关明杰,博士,副教授,硕士生导师,研究方向为碳纤维增强木制复合材料 E-mail: mingjieguan@126.com

  • 中图分类号: TB332

Effect of coupling agent treatment on interfacial bonding strength of carbon fiber/flattened bamboo composite

  • 摘要: 碳纤维/竹展平板是提高竹材在工程产品中应用的一种新型复合材料。胶合界面是复合材料传递力的桥梁,胶合界面的胶合性能是影响复合材料整体力学性能的关键。研究了羟甲基化间苯二酚(Hydroxymethylated resorcinol,HMR)偶联剂处理竹展平板表面对碳纤维/竹展平板复合材料的胶合性能的影响,按照不同的组坯方式和竹展平板表面处理方式将测试的试件分为4组。从碳纤维/竹展平板复合材料胶合界面的端面密度分布梯度、应变分布和应力传递以及微观形貌三个角度进行测试分析。结果表明,HMR偶联剂处理后,碳纤维/竹展平板复合材料的胶合强度相较于未处理组提高了42.7%;碳纤维/竹展平板复合材料胶合界面密度明显增大,胶层厚度变宽,胶层应变分布和应力传递更加均匀,HMR偶联剂起到了良好的桥接作用;HMR偶联剂与碳纤维协同作用,使胶合界面的应力传递更为连续,提高了碳纤维/竹展平板复合材料的胶合性能。

     

  • 图  1  碳纤维/竹展平复合材料的结构和分组

    Figure  1.  Structure and grouping of carbon fiber (CF)/flattened bamboo composite

    图  2  数字图像相关法测试示意图

    Figure  2.  Digital image correlation test diagram

    图  3  碳纤维/竹展平复合材料的拉伸剪切强度

    Figure  3.  Tensile shear strength of CF/flattened bamboo composite

    图  4  碳纤维/竹展平复合材料的拉伸剪切破坏模式

    Figure  4.  Tensile shear failure mode of CF/flattened bamboo composite

    图  5  碳纤维/竹展平复合材料端面密度分布曲线

    Figure  5.  Vertical density distribution curve of CF/flattened bamboo composite

    图  6  碳纤维/竹展平复合材料胶合界面剪切应变分布

    Figure  6.  Shear strain distribution of CF/flattened bamboo composite

    图  7  碳纤维/竹展平复合材料的微观形貌SEM图像

    Figure  7.  SEM images of CF/flattened bamboo composite

    图  8  碳纤维/竹展平复合材料的胶层厚度

    Figure  8.  Bondline thickness of CF/flattened bamboo composite

    表  1  HMR偶联剂配料表

    Table  1.   Ingredients of HMR coupling agents

    IngredientMass fraction/%
    Resorcinol crystals3.34
    Sodium hydroxide2.44
    Formalin(37%)3.79
    Distilled water90.43
    下载: 导出CSV

    表  2  碳纤维/竹展平复合材料的木破率

    Table  2.   Wood failure ratio of CF/flattened bamboo composite

    GroupWood failure ratio/%
    Dry StateWet State
    I-O800
    I′-O′10050
    I-C-O770
    I′-C-O′9558
    下载: 导出CSV

    表  3  碳纤维/竹展平复合材料的胶层端面密度处理结果

    Table  3.   Results of vertical density distribution of bondline of CF/flattened bamboo composite

    GroupUnits density/
    (g·cm−3)
    Average density/
    (g·cm−3)
    Left half peak
    width/mm
    Right half peak
    width/mm
    Half peak
    width/mm
    Peak area/
    (g·cm−2)
    I-O0.89-1.151.040.070.120.190.003
    I′-O′0.72-1.061.090.090.140.230.002
    I-C-O1.0-1.191.120.140.230.370.016
    I′-C-O′0.83-1.111.050.180.250. 430.013
    下载: 导出CSV
  • [1] 人行国际司青年课题组. 主要国家实现“碳中和”路线图[N]. 第一财经日报, 2021-02-04(A11).

    Youth Research Group of International Department, People's Bank of China. Major countries to achieve "carbon neutral" roadmap [N]. China Business News, 2021-02-04(A11) (in Chinese).
    [2] 余晶. 绿色建筑行业的发展趋势—从低碳走向碳中和[J]. 混凝土世界, 2011(7):38-43. doi: 10.3969/j.issn.1674-7011.2011.07.010

    YU Jing. Development Trend of Green Building Industry - from low carbon to carbon neutral[J]. Concrete World,2011(7):38-43(in Chinese). doi: 10.3969/j.issn.1674-7011.2011.07.010
    [3] 江亿, 胡姗. 中国建筑部门实现碳中和的路径[J]. 暖通空调, 2021, 51(5):1-13.

    JIANG YI, HU Shan. Path to achieve carbon neutrality in China's building sector[J]. Hvac,2021,51(5):1-13(in Chinese).
    [4] 刘光胜. 大力发展竹建材是新时代的需要[J]. 中国林业产业, 2020(7):44-47.

    LIU Guangsheng. Vigorously developing bamboo building materials is the need of the new era[J]. Chinese Forestry Industry,2020(7):44-47(in Chinese).
    [5] 李海涛, 宣一伟, 许斌, 李淑恒. 竹材在土木工程领域的应用[J]. 林业工程学报, 2020, 5(6):1-10.

    LI Haitao, XUAN Yiwei, XU Bin, LI Shuheng. Application of Bamboo in civil Engineering[J]. Journal of Forestry Engineering,2020,5(6):1-10(in Chinese).
    [6] 李延军, 娄志超. 竹材展平技术研究现状及展望[J]. 林业工程学报, 2021, 6(4):14-23.

    LI Yanjun, LOU Zhichao. Research Status and Prospect of bamboo flattening Technology[J]. Journal of Forestry Engineering,2021,6(4):14-23(in Chinese).
    [7] Lou, Z. , et al., Fabrication of Crack-Free Flattened Bamboo and Its Macro-/Micro- Morphological and Mechanical Properties[J]. JOURNAL OF RENEWABLE MATERIALS,2020,9(5):959-977.
    [8] 贺福, 杨永岗. 碳纤维增强木材复合材料[J]. 化工新型材料, 2003(10):9-12. doi: 10.3969/j.issn.1006-3536.2003.10.004

    HE Fu, YANG Yonggang. Carbon fiber reinforced wood composite[J]. New chemical materials,2003(10):9-12(in Chinese). doi: 10.3969/j.issn.1006-3536.2003.10.004
    [9] Berger D, Brabandt D, Bakir C, et al. Effects of defects in series production of hybrid CFRP lightweight components - detection and evaluation of quality critical characteristics[J]. Measurement,2016,95:389-394.
    [10] Liu Y, Guan M, Chen X, et al. Flexural Properties Evaluation of Carbon-Fiber Fabric Reinforced Poplar/Eucalyptus Composite Plywood Formwork[J]. Composite Structures,2019,224(SEP.):111073.
    [11] 黄桂秋. 竹材加固的力学性能试验研究分析[D]. 上海交通大学, 2013.

    HUANG Guiqiu. Experimental Study and Analysis of Mechanical Properties of Bamboo Reinforcement[D]. Shanghai Jiaotong University, 2013 (in Chinese).
    [12] 吴祐德, 孟鑫淼, 冯鹏, 林红威. 基于表观属性的毛竹轴向抗压强度预测模型研究[J]. 工业建筑, 2020, 50(4):71-75.

    WU Youde, MENG Xinmiao, FENG Peng, LIN Hongwei. Prediction Model of Bamboo Axial Compressive Strength Based on Apparent Properties[J]. Industrial Buildings,2020,50(4):71-75(in Chinese).
    [13] Huang, GQ, Jiang, et al. Performances of Carbon Fiber Cloth Reinforced Bamboos[J]. Advanced Building Materials And Sustainable Architecture, 2012 , PTS 1-4 174-177, 1459-1462, .
    [14] D Xu, Yang W, Li X, et al. Surface nanostructure and wettability inducing high bonding strength of polyphenylene sulfide-aluminum composite structure[J]. Applied Surface Science,2020:515.
    [15] Yong, X. G[J]. J. I. J. o. M. S. , Effect of Interface Structure on Mechanical Properties of Advanced Composite Materials,2009,10(12):5115-5134.
    [16] 林乐乐. 炭纤维表面特性对复合材料表面性能的影响研究[J]. 炭素技术, 2020, V.39(229):61-65.

    LIN Lele. Study on the Influence of carbon fiber surface Properties on the surface properties of composites[J]. Carbon Technology,2020,V.39(229):61-65(in Chinese).
    [17] Godara A, Mezzo L, Luizi F, et al. Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites[J]. Carbon,2009,47(12):2914-2923. doi: 10.1016/j.carbon.2009.06.039
    [18] 江泽慧, 于文吉, 余养伦. 竹材表面润湿性研究[J]. 竹子研究汇刊, 2005, 24(4):31-38.

    JIANG Zehui, YU Wenji, YU Yanglun. A Study on the Wettability of Bamboo Wood Surface[J]. Journal of bamboo research,2005,24(4):31-38(in Chinese).
    [19] Chen H, Zhang Y, Yang X, et al. A comparative study of the microstructure and water permeability between flattened bamboo and bamboo culm[J]. Journal of Wood Science,2019,65(1):64. doi: 10.1186/s10086-019-1842-0
    [20] 关明杰, 刘仪, 朱越强, 张紫嫣, 黄志伟. 超声对竹材表面性能和竹层积材胶合性能的影响[J]. 竹子学报, 2018, 37(1):8-15. doi: 10.3969/j.issn.1000-6567.2018.01.002

    GUAN Mingjie, LIU Yi, ZHU Yueqiang, ZHANG Ziyan, HUANG Zhiwei. Effect of ultrasonic on surface properties and bonding properties of bamboo laminates[J]. Journal of bamboo,2018,37(1):8-15(in Chinese). doi: 10.3969/j.issn.1000-6567.2018.01.002
    [21] Ma, Q. , et al. Tensile properties of surface modified bamboo slices coated with epoxy resin considering the corrosion of acid alkali environment[J]. Wood Research,2021,66(2):183-194. doi: 10.37763/wr.1336-4561/66.2.183194
    [22] Okkonen E A, Vick C B. Bondability of salvaged yellow-cedar with phenol-resorcinol adhesive and hydroxymethylated resorcinol coupling agent[J]. Forest Products Journal,1999,48(11):81-85.
    [23] Vick C B. Coupling agent improves durability of PRF bonds to CCA-treated southern pine[J]. Forest Products Journal,1995,45(3):78-84.
    [24] 任一萍, 王正, 王志玲. 竹材表面处理对胶合性能的影响[J]. 粘接, 2009, 30(2):34-37+33.

    REN Yiping, WANG Zheng, WANG Zhiling. Effect of surface treatment on bonding properties of bamboo[J]. Bonding,2009,30(2):34-37+33(in Chinese).
    [25] DIN EN 302-1-2013, Adhesives for load-bearing timber structures - Test methods - Part 1: Determination of bond strength in longitudinal tensile shear[S].
    [26] 陈泽明, 曹先启, 李博弘, 关悦瑜, 徐博, 王超. 水煮处理对环氧树脂胶黏剂热膨胀性能的影响[J]. 化学与黏合, 2017, 39(6): 424-426.

    CHEN Zeming, CAO Xianqi, LI Bohong, GUAN Yueyu, XU Bo, WANG Chao. Effect of boiling treatment on thermal expansion properties of epoxy resin adhesives [J]. Chemistry and Viscosity, 2017, 33(6): 424-426 (in Chinese).
    [27] 刘焕荣, 杨晓梦, 张秀标, 等. 竹展平板拉伸剪切胶合性能[J]. 林业工程学报, 2021, 6(1):68-72.

    LIU Huanrong, YANG Xiaomeng, ZHANG Xiubiao, et al. The tensile shear bonding property of flattened bamboo sheet[J]. Journal of Forestry Engineering,2021,6(1):68-72(in Chinese).
    [28] He Q, Zhan T, Zhang H, et al. Robust and durable bonding performance of bamboo induced by high voltage electrostatic field treatment[J]. Industrial Crops and Products,2019,137:149-156. doi: 10.1016/j.indcrop.2019.05.010
    [29] Wang F , Lu M , Zhou S , et al. Effect of Fiber Surface Modification on the Interfacial Adhesion and Thermo-Mechanical Performance of Unidirectional Epoxy-Based Composites Reinforced with Bamboo Fibers[J]. Molecules, 2019, 24(15).
    [30] Liang X, Gao X, Zhang H, et al. Interlaminar shear behaviors of 2D needled C/SiC composites under compressive and tensile loading[J]. Ceramics International,2020,47(4):4954-4962.
    [31] He Q, Zhan T, Zhang H, et al. Robust and durable bonding performance of bamboo induced by high voltage electrostatic field treatment[J]. Industrial Crops and Products,2019,137:149-156. doi: 10.1016/j.indcrop.2019.05.010
  • 加载中
计量
  • 文章访问数:  123
  • HTML全文浏览量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-12
  • 录用日期:  2022-01-10
  • 修回日期:  2021-12-18
  • 网络出版日期:  2022-02-16

目录

    /

    返回文章
    返回