留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偶联剂处理对碳纤维/竹展平板复合材料界面结合强度的影响

马志远 关明杰

马志远, 关明杰. 偶联剂处理对碳纤维/竹展平板复合材料界面结合强度的影响[J]. 复合材料学报, 2023, 40(1): 419-427. doi: 10.13801/j.cnki.fhclxb.20220120.004
引用本文: 马志远, 关明杰. 偶联剂处理对碳纤维/竹展平板复合材料界面结合强度的影响[J]. 复合材料学报, 2023, 40(1): 419-427. doi: 10.13801/j.cnki.fhclxb.20220120.004
MA Zhiyuan, GUAN Mingjie. Effect of coupling agent treatment on interfacial bonding strength of carbon fiber/flattened bamboo composite[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 419-427. doi: 10.13801/j.cnki.fhclxb.20220120.004
Citation: MA Zhiyuan, GUAN Mingjie. Effect of coupling agent treatment on interfacial bonding strength of carbon fiber/flattened bamboo composite[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 419-427. doi: 10.13801/j.cnki.fhclxb.20220120.004

偶联剂处理对碳纤维/竹展平板复合材料界面结合强度的影响

doi: 10.13801/j.cnki.fhclxb.20220120.004
基金项目: 江苏省农业创新自主创新基金(CX(19)3036)
详细信息
    通讯作者:

    关明杰,博士,副教授,硕士生导师,研究方向为碳纤维增强木制复合材料 E-mail: mingjieguan@126.com

  • 中图分类号: TB332

Effect of coupling agent treatment on interfacial bonding strength of carbon fiber/flattened bamboo composite

Funds: Jiangsu Agricultural Science and Technology Innovation Fund (CX(19)3036)
  • 摘要: 碳纤维/竹展平板是提高竹材在工程产品中应用的一种新型复合材料。胶合界面是复合材料传递力的桥梁,胶合界面的胶合性能是影响复合材料整体力学性能的关键。研究了羟甲基化间苯二酚(Hydroxymethylated resorcinol,HMR)偶联剂处理竹展平板表面对碳纤维/竹展平板复合材料的胶合性能的影响,按照不同的组坯方式和竹展平板表面处理方式将测试的试件分为4组。从碳纤维/竹展平板复合材料胶合界面的端面密度分布梯度、应变分布和应力传递及微观形貌3个角度进行测试分析。结果表明:HMR偶联剂处理后,碳纤维/竹展平板复合材料的胶合强度相较于未处理组提高了42.7%;碳纤维/竹展平板复合材料胶合界面密度明显增大,胶层厚度变宽,胶层应变分布和应力传递更加均匀,HMR偶联剂起到了良好的桥接作用;HMR偶联剂与碳纤维协同作用,使胶合界面的应力传递更连续,提高了碳纤维/竹展平板复合材料的胶合性能。

     

  • 图  1  碳纤维(CF)/竹展平板复合材料的结构和分组

    Figure  1.  Structure and grouping of carbon fiber (CF)/flattened bamboo composite

    图  2  数字图像相关法测试示意图

    Figure  2.  Digital image correlation test diagram

    图  3  碳纤维/竹展平板复合材料的拉伸剪切强度

    Figure  3.  Tensile shear strength of CF/flattened bamboo composite

    图  4  碳纤维/竹展平板复合材料的拉伸剪切破坏模式

    Figure  4.  Tensile shear failure mode of CF/flattened bamboo composite

    图  5  碳纤维/竹展平板复合材料端面密度分布曲线

    Figure  5.  Vertical density distribution curves of CF/flattened bamboo composite

    图  6  碳纤维/竹展平复合材料胶合界面剪切应变分布

    Figure  6.  Shear strain distribution of CF/flattened bamboo composite

    图  7  碳纤维/竹展平板复合材料的SEM图像

    Figure  7.  SEM images of CF/flattened bamboo composite

    图  8  碳纤维/竹展平板复合材料的胶层厚度

    Figure  8.  Bondline thickness of CF/flattened bamboo composite

    表  1  羟甲基化间苯二酚 (HMR) 偶联剂配料表

    Table  1.   Ingredients of hydroxy-methylated resorcinol (HMR) coupling agents

    IngredientMass fraction/wt%
    Resorcinol crystals 3.34
    Sodium hydroxide 2.44
    Formalin(37%) 3.79
    Distilled water90.43
    下载: 导出CSV

    表  2  碳纤维/竹展平板复合材料的木破率

    Table  2.   Wood failure ratio of CF/flattened bamboo composite

    GroupWood failure ratio/%
    Dry stateWet state
    I-O 80 0
    I′-O′10050
    I-C-O 77 0
    I′-C-O′ 9558
    下载: 导出CSV

    表  3  碳纤维/竹展平板复合材料的胶层端面密度处理结果

    Table  3.   Results of vertical density distribution of bondline of CF/flattened bamboo composite

    GroupUnits density/
    (g·cm−3)
    Average density/
    (g·cm−3)
    Left half peak
    width/mm
    Right half peak
    width/mm
    Half peak
    width/mm
    Peak area/
    (g·cm−2)
    I-O0.89-1.151.040.070.120.190.003
    I′-O′0.72-1.061.090.090.140.230.002
    I-C-O1.00-1.191.120.140.230.370.016
    I′-C-O′0.83-1.111.050.180.250.430.013
    下载: 导出CSV
  • [1] 人行国际司青年课题组. 主要国家实现“碳中和”路线图[N]. 第一财经日报, 2021-02-04(A11).

    Youth Research Group of International Department, People's Bank of China. Major countries to achieve "carbon neutral" roadmap[N]. China Business News, 2021-02-04(A11) (in Chinese).
    [2] 余晶. 绿色建筑行业的发展趋势—从低碳走向碳中和[J]. 混凝土世界, 2011(7):38-43.

    YU Jing. Development trend of green building industry from low carbon to carbon neutral[J]. Concrete World,2011(7):38-43(in Chinese).
    [3] 江亿, 胡姗. 中国建筑部门实现碳中和的路径[J]. 暖通空调, 2021, 51(5):1-13.

    JIANG Yi, HU Shan. Path to achieve carbon neutrality in China's building sector[J]. Heating Ventilating & Air Conditioning,2021,51(5):1-13(in Chinese).
    [4] 刘光胜. 大力发展竹建材是新时代的需要[J]. 中国林业产业, 2020(7):44-47.

    LIU Guangsheng. Vigorously developing bamboo building materials is the need of the new era[J]. Chinese Forestry Industry,2020(7):44-47(in Chinese).
    [5] 李海涛, 宣一伟, 许斌, 等. 竹材在土木工程领域的应用[J]. 林业工程学报, 2020, 5(6):1-10.

    LI Haitao, XUAN Yiwei, XU Bin, et al. Application of bamboo in civil engineering[J]. Journal of Forestry Engineering,2020,5(6):1-10(in Chinese).
    [6] 李延军, 娄志超. 竹材展平技术研究现状及展望[J]. 林业工程学报, 2021, 6(4):14-23.

    LI Yanjun, LOU Zhichao. Research status and prospect of bamboo flattening technology[J]. Journal of Forestry Engineering,2021,6(4):14-23(in Chinese).
    [7] LOU Z C, YUAN T C, WANG Q Y, et al. Fabrication of crack-free flattened bamboo and its macro-/micro- morphological and mechanical properties[J]. Journal of Renewable Materials,2021,9(5):959-977. doi: 10.32604/jrm.2021.014285
    [8] 贺福, 杨永岗. 碳纤维增强木材复合材料[J]. 化工新型材料, 2003, 31(10):9-12. doi: 10.3969/j.issn.1006-3536.2003.10.004

    HE Fu, YANG Yonggang. Carbon fiber reinforced wood composite[J]. New Chemical Materials,2003,31(10):9-12(in Chinese). doi: 10.3969/j.issn.1006-3536.2003.10.004
    [9] BERGER D, BRABANDT D, BAKIR C, et al. Effects of defects in series production of hybrid CFRP lightweight components-detection and evaluation of quality critical characteristics[J]. Measurement,2017,95:389-394. doi: 10.1016/j.measurement.2016.10.003
    [10] LIU Y, GUAN M, CHEN X, et al. Flexural properties evaluation of carbon-fiber fabric reinforced poplar/eucalyptus composite plywood formwork[J]. Composite Structures,2019,224:111073. doi: 10.1016/j.compstruct.2019.111073
    [11] 黄桂秋. 竹材加固的力学性能试验研究分析[D]. 上海: 上海交通大学, 2013.

    HUANG Guiqiu. Experimental study and analysis of mechanical properties of bamboo reinforcement[D]. Shanghai: Shanghai Jiao Tong University, 2013(in Chinese).
    [12] 吴祐德, 孟鑫淼, 冯鹏, 等. 基于表观属性的毛竹轴向抗压强度预测模型研究[J]. 工业建筑, 2020, 50(4):71-75.

    WU Youde, MENG Xinmiao, FENG Peng, et al. Prediction model of bamboo axial compressive strength based on apparent properties[J]. Industrial Buildings,2020,50(4):71-75(in Chinese).
    [13] HUANG G Q, HUANG Z, JIANG J, et al. Performances of carbon fiber cloth reinforced bamboos[J]. Applied Mechanics and Materials,2012,174-177:1459-1462. doi: 10.4028/www.scientific.net/AMM.174-177.1459
    [14] XU D, YANG W, LI X, et al. Surface nanostructure and wettability inducing high bonding strength of polyphenylene sulfide-aluminum composite structure[J]. Applied Surface Science,2020,515:145996. doi: 10.1016/j.apsusc.2020.145996
    [15] GAN Y X. Effect of interface structure on mechanical properties of advanced composite materials[J]. International Journal of Molecular Sciences,2009,10(12):5115-5134. doi: 10.3390/ijms10125115
    [16] 林乐乐. 炭纤维表面特性对复合材料表面性能的影响研究[J]. 炭素技术, 2020, 39(4):57-61. doi: 10.14078/j.cnki.1001-3741.2020.04.013

    LIN Lele. Study on the influence of carbon fiber surface properties on the surface properties of composites[J]. Carbon Technology,2020,39(4):57-61(in Chinese). doi: 10.14078/j.cnki.1001-3741.2020.04.013
    [17] GODARA A, MEZZO L, LUIZI F, et al. Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites[J]. Carbon,2009,47(12):2914-2923. doi: 10.1016/j.carbon.2009.06.039
    [18] 江泽慧, 于文吉, 余养伦. 竹材表面润湿性研究[J]. 竹子研究汇刊, 2005, 24(4):31-38.

    JIANG Zehui, YU Wenji, YU Yanglun. A study on the wettability of bamboo wood surface[J]. Journal of Bamboo Research,2005,24(4):31-38(in Chinese).
    [19] CHEN H, ZHANG Y, YANG X, et al. A comparative study of the microstructure and water permeability between flattened bamboo and bamboo culm[J]. Journal of Wood Science,2019,65(1):64. doi: 10.1186/s10086-019-1842-0
    [20] 关明杰, 刘仪, 朱越强, 等. 超声对竹材表面性能和竹层积材胶合性能的影响[J]. 竹子学报, 2018, 37(1):8-15. doi: 10.3969/j.issn.1000-6567.2018.01.002

    GUAN Mingjie, LIU Yi, ZHU Yueqiang, et al. Effect of ultrasonic on surface properties and bonding properties of bamboo laminates[J]. Journal of Bamboo,2018,37(1):8-15(in Chinese). doi: 10.3969/j.issn.1000-6567.2018.01.002
    [21] MA Q, LIU Z, XIAO H L, et al. Tensile properties of surface modified bamboo slices coated with epoxy resin considering the corrosion of acid alkali environment[J]. Wood Research,2021,66(2):183-194. doi: 10.37763/wr.1336-4561/66.2.183194
    [22] OKKONEN E A, VICK C B. Bondability of salvaged yellow-cedar with phenol-resorcinol adhesive and hydroxymethylated resorcinol coupling agent[J]. Forest Products Journal,1999,48(11-12):81-85.
    [23] VICK C B. Coupling agent improves durability of PRF bonds to CCA-treated southern pine[J]. Forest Products Journal,1995,45(3):78-84.
    [24] 任一萍, 王正, 王志玲. 竹材表面处理对胶合性能的影响[J]. 粘接, 2009, 30(2):33, 34-37.

    REN Yiping, WANG Zheng, WANG Zhiling. Effect of surface treatment on bonding properties of bamboo[J]. Bonding,2009,30(2):33, 34-37(in Chinese).
    [25] Deutsches Institut fur Normung E.V. (DIN). Adhesives for load-bearing timber structures—Test methods—Part 1: Determination of bond strength in longitudinal tensile shear: DIN EN 302-1—2013[S]. Berlin: Deutsches Institut fur Normung E.V. (DIN), 2013.
    [26] 陈泽明, 曹先启, 李博弘, 等. 水煮处理对环氧树脂胶黏剂热膨胀性能的影响[J]. 化学与黏合, 2017, 39(6): 424-426.

    CHEN Zeming, CAO Xianqi, LI Bohong, et al. Effect of boiling treatment on thermal expansion properties of epoxy resin adhesives[J]. Chemistry and Viscosity, 2017, 39(6): 424-426(in Chinese).
    [27] 刘焕荣, 杨晓梦, 张秀标, 等. 竹展平板拉伸剪切胶合性能[J]. 林业工程学报, 2021, 6(1):68-72.

    LIU Huanrong, YANG Xiaomeng, ZHANG Xiubiao, et al. The tensile shear bonding property of flattened bamboo sheet[J]. Journal of Forestry Engineering,2021,6(1):68-72(in Chinese).
    [28] HE Q, ZHAN T, ZHANG H, et al. Robust and durable bonding performance of bamboo induced by high voltage electrostatic field treatment[J]. Industrial Crops and Products,2019,137:149-156. doi: 10.1016/j.indcrop.2019.05.010
    [29] WANG F, LU M, ZHOU S, et al. Effect of fiber surface modification on the interfacial adhesion and thermo-mechanical performance of unidirectional epoxy-based composites reinforced with bamboo fibers[J]. Molecules, 2019, 24(15): 2682.
    [30] LIANG X, GAO X, ZHANG H, et al. Interlaminar shear behaviors of 2D needled C/SiC composites under compressive and tensile loading[J]. Ceramics International,2020,47(4):4954-4962.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  834
  • HTML全文浏览量:  495
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-12
  • 修回日期:  2021-12-18
  • 录用日期:  2022-01-10
  • 网络出版日期:  2022-01-20
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回