留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维立体介孔结构的海藻酸钠/氧化石墨烯复合气凝胶的制备及其对亚甲基蓝的吸附

朱薇 江坤 游峰 姚楚 王昆 江学良

朱薇, 江坤, 游峰, 等. 三维立体介孔结构的海藻酸钠/氧化石墨烯复合气凝胶的制备及其对亚甲基蓝的吸附[J]. 复合材料学报, 2022, 39(5): 2215-2225. doi: 10.13801/j.cnki.fhclxb.20210730.001
引用本文: 朱薇, 江坤, 游峰, 等. 三维立体介孔结构的海藻酸钠/氧化石墨烯复合气凝胶的制备及其对亚甲基蓝的吸附[J]. 复合材料学报, 2022, 39(5): 2215-2225. doi: 10.13801/j.cnki.fhclxb.20210730.001
ZHU Wei, JIANG Kun, YOU Feng, et al. Preparation of 3-dimensional mesoporous sodium alginate/graphene oxide composite aerogel for adsorption of methylene blue[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2215-2225. doi: 10.13801/j.cnki.fhclxb.20210730.001
Citation: ZHU Wei, JIANG Kun, YOU Feng, et al. Preparation of 3-dimensional mesoporous sodium alginate/graphene oxide composite aerogel for adsorption of methylene blue[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2215-2225. doi: 10.13801/j.cnki.fhclxb.20210730.001

三维立体介孔结构的海藻酸钠/氧化石墨烯复合气凝胶的制备及其对亚甲基蓝的吸附

doi: 10.13801/j.cnki.fhclxb.20210730.001
基金项目: 国家自然科学基金 (51273154);湖北省自然科学基金 (2017CFB289);湖北省教育厅科研项目 (B2016483);等离子体化学与新材料湖北省重点实验室创新基金 (2020CX03)
详细信息
    通讯作者:

    江学良,博士,教授,博士生导师,研究方向为有机-无机杂化材料与功能高分子材料 E-mail:jiangxl@wit.edu.cn

  • 中图分类号: TB3333

Preparation of 3-dimensional mesoporous sodium alginate/graphene oxide composite aerogel for adsorption of methylene blue

  • 摘要: 为了有效去除废水中的染料,本论文以海藻酸钠 (SA) 和氧化石墨烯 (GO) 为原料,采用一步水热法制备海藻酸钠/氧化石墨烯 (SA/GO) 复合水凝胶,并通过冷冻干燥法得SA/GO复合气凝胶。利用FT-IR、XRD、SEM、TEM、N2等温吸附-脱附、接触角来表征SA/GO复合气凝胶并研究其吸附性能。结果表明,SA/GO复合气凝胶是具有三维立体结构的多孔材料,BET比表面积约为580.54 m2·g−1。讨论了SA/GO复合气凝胶对亚甲基蓝 (MB) 溶液吸附过程的影响因素,在碱性条件下,吸附效果最好,吸附率可达99.41%,吸附量可达248.53 mg·g−1,并表现出优异的循环再生性。

     

  • 图  1  不同样品的FT-IR光谱图: (a) 氧化石墨烯 (GO) 气凝胶; (b) 海藻酸钠/氧化石墨烯 (SA/GO) 复合气凝胶

    Figure  1.  FT-IR spectra of different samples: (a) Graphene oxide (GO) aerogel; (b) Sodium alginate/graphene oxide (SA/GO) composite aerogel

    图  2  不同样品的XRD图谱:(a) GO气凝胶; (b) SA/GO 复合气凝胶

    Figure  2.  XRD patterns of different samples: (a) GO aerogel; (b) SA/GO composite aerogel

    图  3  GO气凝胶和SA/GO复合气凝胶的SEM ((a), (b)) 和SA/GO复合气凝胶的TEM图像 ((c), (d))

    Figure  3.  SEM images of samples for GO aerogel and SA/GO composite aerogel ((a), (b)), TEM images of SA/GO composite aerogel ((c), (d))

    图  4  SA/GO复合气凝胶的N2吸附-解吸曲线 (a) 以及BJH孔径分布曲线 (b)

    Figure  4.  N2 adsorption-desorption curve (a) and BJH pore size distribution curve (b) of SA/GO composite aerogel

    图  5  GO气凝胶 (a) 和SA/GO复合气凝胶 (b) 的接触角

    Figure  5.  Contact angles of GO aerogel (a) and SA/GO composite aeroge (b)

    图  6  GO气凝胶与SA/GO复合气凝胶对亚甲基蓝 (MB) 吸附性能的比较

    Figure  6.  Comparison of adsorption properties of GO aerogel and SA/GO composite aerogel for methylene blue (MB)

    图  7  染料浓度对SA/GO复合气凝胶吸附MB性能的影响

    Figure  7.  Effect of dye concentration on MB adsorption performance of SA/GO composite aerogel

    图  8  吸附剂原料比例对SA/GO复合气凝胶吸附MB性能的影响

    Figure  8.  Effect of proportion of adsorbent materials on MB adsorption performance of SA/GO composite aerogel

    图  9  pH值对SA/GO复合气凝胶吸附MB性能的影响

    Figure  9.  Effect of pH on MB adsorption performance of SA/GO composite aerogel

    图  10  SA/GO复合气凝胶对不同染料的吸附性能

    Figure  10.  Adsorption properties of SA/GO composite aerogel on different dyes

    图  11  SA/GO复合气凝胶对MB的循环吸附性

    Figure  11.  Cyclic adsorption of SA/GO composite aerogels on MB

    图  12  SA/GO复合气凝胶吸附MB的Langmuir吸附等温线 (a) 和Freundlich吸附等温线 (b)

    Figure  12.  Langmuir adsorption isotherm (a) and Freundlich adsorption isotherm (b) of SA/GO composite aerogels on MB

    Ce—Concentration at adsorption equilibrium; Qe—Adsorption capacity at adsorption equilibrium

    图  13  SA/GO复合气凝胶吸附MB的准一级吸附动力学 (a) 和准二级吸附动力学(b)模型

    Figure  13.  Quasi-first-order adsorption kinetics (a) and quasi-secondary adsorption kinetic model (b) of SA/GO composite aerogels on MB

    t—Adsorption time; qt—Adsorption capacity at time t

    图  14  SA/GO复合气凝胶吸附原理图

    Figure  14.  Schematic diagram of adsorption by SA/GO composite aerogel

    MB—Methylene blue;RhB—Rhodamine B

    表  1  SA/GO复合气凝胶的孔结构分析

    Table  1.   Hole structure analysis of SA/GO composite aerogel

    ParameterBET/
    (m2·g−1)
    Pore diameter/
    nm
    Pore volume/
    (cm3·g−1)
    Value580.543.410.40
    下载: 导出CSV

    表  2  Langmuir和Freundlich等温吸附参数

    Table  2.   Isothermal adsorption parameters of Langmuir and Freundlich

    T/℃Langmuir Freundlich
    Qmax/(mg·g−1)KL/(L·mg−1)RLR2 kF/(mg·g−1·(L·mg−1)1/n)nR2
    25 207.9002 1.6141 0.0122 0.98421 246.3985 3.7158 0.99775
    Notes: Qmax—Saturated adsorption capacity; KL—Langmuir constant; RL—Dimensionless equilibrium parameters; R2—Fitting constant; kF—Freundlich constants related to adsorption capacity; n—Freundlich constants related to adsorption strength; T—Temperature.
    下载: 导出CSV

    表  3  MB吸附动力学模型拟合结果

    Table  3.   MB Kinetic model parameters of adsorption

    ModelR2qek
    Quasi-first-order adsorption kinetics model 0.99397 27.8477 0.03671
    Quasi-secondary adsorption kinetics model 0.99982 253.1646 0.00395
    Notes: R2—Fitting constant; qe—Equilibrium adsorption capacity; k—Adsorption kinetics constant.
    下载: 导出CSV

    表  4  各种吸附剂对MB吸附能力的比较

    Table  4.   Adsorption performance of different adsorbents for MB

    AdsorbentsMaximum adsorption capacity/(mg·g−1)Ref.Date/year
    Carboxymethyl cellulose/carboxylated graphene oxide composite microbeads180.23[33]2020
    Pineapple peel carboxy methylcellulose-g-poly(acryliccid-co-acrylamide)/graphene oxide hydrogels133.32[34]2019
    Reduced graphene oxide and montmorillonite composite aerogel227.27[35]2018
    Graphene oxide-magnetic iron oxide nanoparticles232.56[36]2018
    Manganese ferrite-graphene oxide nanocomposites177.30[37]2018
    SA/GO composite aerogel248.53This study
    下载: 导出CSV
  • [1] ZHAN C B, XIONG L Y, SHARMA P R, et al. A study of TiO2 nanocrystal growth and environmental remediation capability of TiO2/CNC nanocomposites[J]. RSC Advances,2019,9:40565-40576. doi: 10.1039/C9RA08861J
    [2] 张华春, 熊国臣. 偶氮染料废水处理方法研究进展[J]. 染料与染色, 2016, 3:45-51.

    ZHANG Huachun, XIONG Guocheng. Research progress of azo dye wastewater treatment[J]. Dyestuffs and Coloration,2016,3:45-51(in Chinese).
    [3] LAU Y Y, WONG Y S, TENG T T, et al. Coagulation flocculation of azo dye acid orange 7 with green refined laterite soil[J]. Chemical Engineering Journal,2014,246:383-390. doi: 10.1016/j.cej.2014.02.100
    [4] 王晓伟, 陈莎. 1-辛基-3-甲基咪唑离子液体作为可循环溶剂萃取/去除水中二价汞研究[J]. 化学学报, 2014, 72(11):1147-1151. doi: 10.6023/A14080587

    WANG Xiaowei, CHEN Sha. Extraction/removal of divalent mercury in water using 1-octyl-3-methylimidazole ionic liquid as a recyclable solvent[J]. Acta Chimica Sinica,2014,72(11):1147-1151(in Chinese). doi: 10.6023/A14080587
    [5] SHALABY T, HAMAD H, IBRAHIM E, et al. Electrospun nanofibers hybrid composites membranes for highly efficient antibacterial activity[J]. Ecotoxicolgy and Environmental Safety,2018,162:354-364. doi: 10.1016/j.ecoenv.2018.07.016
    [6] ZHANG S J, YU C, LIU N, et al. Preparation of transparent anti-pollution cellulose carbamate regenerated cellulose membrane with high separation ability[J]. International Journal of Biological Macromolecules,2019,139:332-341. doi: 10.1016/j.ijbiomac.2019.07.146
    [7] SHARMA P R, CHATTOPADHYAY A, SHARMA S K, et al. Nanocellulose from spinifex as an effective adsorbent to remove cadmium(II) from water[J]. ACS Sustainable Chemistry & Engineering,2018,6:3279-3329.
    [8] SHEN Y, FANG Q, CHEN B. Environmental applications of three-dimensional graphene-based macrostructures: Adsorption, transformation, and detection[J]. Environmental Science & Technology,2014,49:67-84.
    [9] AI L, JIANG J. Removal of methylene blue from aqueous solution with self-assembled cylindrical graphene-carbon nanotube hybrid[J]. Chemical Engineering Journal,2012,192:156-163. doi: 10.1016/j.cej.2012.03.056
    [10] DENG W, ZHOU X, FANG Q, et al. Hydrothermal self-assembly of graphene foams with controllable pore size[J]. RSC Advances,2016,6(25):20843-20849. doi: 10.1039/C5RA26088D
    [11] HUANG Y, ZENG M, CHEN J, et al. Multi-structural network design and mechanical properties of graphene oxide filled chitosan-based hydrogel nanocomposites[J]. Materials & Design,2018,148:104-114.
    [12] MI H Y, JING X, POLITOWICZ A L, et al. Highly compressible ultra-light anisotropic cellulose/graphene aerogel fabricated by bidirectional freeze drying for selective oil absorption[J]. Carbon,2018,132:199-231. doi: 10.1016/j.carbon.2018.02.033
    [13] GENG H. Preparation and characterization of cellulose/N, N-methylene bisacrylamide/graphene oxide hybrid hydrogels and aerogels[J]. Carbohydrate Polymers,2018,196:289-312. doi: 10.1016/j.carbpol.2018.05.058
    [14] LI Y, LIU F, XIA B. Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites[J]. Journal of Hazardous Materials,2010,177:876-880. doi: 10.1016/j.jhazmat.2009.12.114
    [15] 隋坤艳, 谢丹, 高耸. 海藻酸钠/碳纳米管复合凝胶球的制备及其吸附性能[J]. 功能材料, 2010, 2:91-93.

    SUI Kunyan, XIE Dan, GAO Song. Preparation and adsorption properties of alginate/carbon nanotubes composite gel beads[J]. Journal of Functional Materials,2010,2:91-93(in Chinese).
    [16] SUI K, LI Y, LIU R. Biocomposite fiber of calcium alginate/multi-walled carbon nanotubes with enhanced adsorption properties for ionic dyes[J]. Carbohydrate Polymers,2012,90(1):399-406. doi: 10.1016/j.carbpol.2012.05.057
    [17] FAN J, SHI Z, LIAN M, et al. Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity[J]. Journal of Materials Chemistry A,2013,1(25):7433-7443. doi: 10.1039/c3ta10639j
    [18] HUONG C V, AMARENDRA D D, THAO T L, et al. Magnetite graphene oxide encapsulated in alginate beads for enhanced adsorption of Cr(VI) and As(V) from aqueous solutions: Role of crosslinking metal cations in pH control[J]. Chemical Engineering Journal,2017,307:220-229. doi: 10.1016/j.cej.2016.08.058
    [19] YANG X, ZHOU T, REN B, et al. Removal of Mn(II) by sodium alginate/graphene oxide composite double-network hydrogel beads from aqueous solutions[J]. Scientific Reports,2018,8(1):10717-10744. doi: 10.1038/s41598-018-29133-y
    [20] ZHOU F, FENG X, YU J, et al. High performance of 3D porous graphene/lignin/sodium alginate composite for adsorption of Cd(II) and Pb(II)[J]. Environmental Science and Pollution Research,2018,25(16):15651-15662. doi: 10.1007/s11356-018-1733-8
    [21] ZHU W, JIANG X L, LIU F J, et al. Preparation of chitosan-graphene oxide composite aerogel by hydrothermal method and its adsorption property of methyl orange[J]. Polymers,2020,12:2169. doi: 10.3390/polym12092169
    [22] 张娇, 江学良, 余露, 等. 水热法制备二氧化铈纳米空心球及其吸附性能研究[J]. 材料研究学报, 2016, 30(5):365-371. doi: 10.11901/1005.3093.2015.440

    ZHANG Jiao, JIANG Xueliang, YU Lu, et al. Ceria hollow nanospheres synthesized by hydrothermal method and their adsorption capacity[J]. Chinese Journal of Materials Research,2016,30(5):365-371(in Chinese). doi: 10.11901/1005.3093.2015.440
    [23] SUN Y Q, WU Q, SHI G Q. Graphene based new energy materials[J]. Energy & Environmental Science,2011,4:1113-1132.
    [24] HAN D L, YAN L F, CHEN W F, et al. Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state[J]. Carbohydrate Polymers,2011,83(2):653-658. doi: 10.1016/j.carbpol.2010.08.038
    [25] MA W S, ZHOU J W. Preparation of a dispersible graphene[J]. Chemical Journal of Chinese Universities,2010,31(10):1982-1986.
    [26] 胡建民, 王蕊, 王春婷, 等. 晶体X射线衍射模型和布拉格方程的一般推导[J]. 大学物理, 2015, 34(3):1-2.

    HU Jianmin, WANG Rui, WANG Chunting, et al. General derivation of crystal X-ray diffraction model and Bragg equation[J]. College Physics,2015,34(3):1-2(in Chinese).
    [27] 刘哲, 贾建援, 柴伟, 等. 基于液滴润湿形态测定接触角的图像处理方法[J]. 电子工艺技术, 2014, 35(4):194-197.

    LIU Zhe, JIA Jianyuan, CHAI Wei, et al. Image processing method for measurement of wetting angle[J]. Electronics Process Technology,2014,35(4):194-197(in Chinese).
    [28] ZANG C, LI P, HUANG W, et al. Selective adsorption and separation of organic dyes in aqueous solutions by hydrolyzed PIM-1 microfibers[J]. Chemical Engineering Research and Design,2016,109:76-106. doi: 10.1016/j.cherd.2016.01.006
    [29] ZHU L H, GUAN C D, ZHOU B, et al. Adsorption of dyes onto sodium alginate graft poly(acrylic acid-co-2-acrylamide-2-methyl propane pulfonic acid)/kaolin hydrogel composite[J]. Polymers & Polymer Composites, 2017, 25: 627-634.
    [30] LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society,1918,40:1361-1403. doi: 10.1021/ja02242a004
    [31] FREUNIDLICH H M F. Over the adsorption in solution[J]. Journal of Chemical Physics,1906,57:385-471.
    [32] HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry,1999,34:451-465. doi: 10.1016/S0032-9592(98)00112-5
    [33] ELTAWEIL A S, ELGARHY G S, ELl-SUBRUITI G M, et al. Carboxymethyl cellulose/carboxylated graphene oxide composite microbeads for efficient adsorption of cationic methylene blue dye[J]. International Journal of Biological Macromolecules,2020,154:307-318. doi: 10.1016/j.ijbiomac.2020.03.122
    [34] DAI H, ZHANG Y, MA L, et al. Synthesis and response of pineapple peel carboxymethyl cellulose-g-poly(acrylic acid-co acrylamide)/graphene oxide hydrogels[J]. Carbohydrate Polymers,2019,215:366-376. doi: 10.1016/j.carbpol.2019.03.090
    [35] ZHANG Y Y, YAN X R, YAN Y Y, et al. The utilization of a three-dimensional reduced graphene oxide and montmorillonite composite aerogel as a multifunctional agent for wastewater treatment[J]. RSC Advances,2018,8:4239-4248. doi: 10.1039/C7RA13103H
    [36] OTHMAN N H, ALIAS N H, SHAHRUDDIN M Z, et al. Adsorption kinetics of methylene blue dyes onto magnetic graphene oxide[J]. Journal of Environmental Chemical Engineering,2018,6(2):2803-2832. doi: 10.1016/j.jece.2018.04.024
    [37] HUONG P T, TU N, LAN H, et al. Functional manganese ferrite/graphene oxide nanocomposite: Effects of graphene oxide on the adsorption mechanisms of organic MB dye and inorganic As(V) ions from aqueous solution[J]. RSC Advances,2018,8(22):12376-12389. doi: 10.1039/C8RA00270C
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  910
  • HTML全文浏览量:  814
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-17
  • 修回日期:  2021-06-23
  • 录用日期:  2021-07-09
  • 网络出版日期:  2021-07-30
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回