留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混掺固废磷石膏纤维增强水泥基复合材料强度特性与机理

付军 张澳 赵洲峰 裘吕超 李锐杰 朱哲汛

付军, 张澳, 赵洲峰, 等. 混掺固废磷石膏纤维增强水泥基复合材料强度特性与机理[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 付军, 张澳, 赵洲峰, 等. 混掺固废磷石膏纤维增强水泥基复合材料强度特性与机理[J]. 复合材料学报, 2024, 42(0): 1-13.
FU Jun, ZHANG Ao, ZHAO Zhoufeng, et al. Strength characteristics and mechanism of cementitious composites reinforced by fibers of mixed solid waste phosphogypsum[J]. Acta Materiae Compositae Sinica.
Citation: FU Jun, ZHANG Ao, ZHAO Zhoufeng, et al. Strength characteristics and mechanism of cementitious composites reinforced by fibers of mixed solid waste phosphogypsum[J]. Acta Materiae Compositae Sinica.

混掺固废磷石膏纤维增强水泥基复合材料强度特性与机理

基金项目: 国家自然科学基金(52378235);国家电网企业发展基金(GJRD2022-04)
详细信息
    通讯作者:

    付军,博士,教授,博士生导师,研究方向为基础设施新材料与新结构 E-mail: figrant@whut.edu.cn

  • 中图分类号: TB332

Strength characteristics and mechanism of cementitious composites reinforced by fibers of mixed solid waste phosphogypsum

Funds: The National Natural Science Foundation of China (52378235); State Grid Enterprise Development Fund (GJRD2022-04)
  • 摘要: 采用流浆法成功制备了一种混掺磷石膏固废的纤维增强水泥复合材料。首先对固废磷石膏进行生石灰中和、去杂、烘焙改性处理激发其胶凝特性,再按5∶4∶1比例与矿粉、钢砂混合,形成改性固废磷石膏混合料(Modified solid waste phosphogypsum mix , MWPM)作为辅助胶凝材料,取代部分水泥;采用固废磷石膏集料替代部分天然细集料,同时考虑掺入少量聚甲醛(POM)纤维及木制纸浆纤维,进行纤维增强水泥基复合材料的基准配合比设计研究,并结合XRD及SEM分析其强度及微观机理。结果表明,MWPM与磷石膏集料的掺量对固废纤维增强水泥板的密度、吸水率导热系数等几乎没有影响;尽管前期强度随着MWPM掺量的增加而略微降低,但在掺量达到18%左右时仍能保持在4MPa左右,且后期强度相比之下有部分增强。同时经过冻融实验后的冻融抗折强度比率不低于70%,满足非承重纤维增强水泥板规范需求;磷石膏集料对复合材料有微小的增强效应,掺量为20%时相对优化。基于上述研究,提出了混掺磷石膏固废纤维增强水泥基复合材料的基准配合比,可有效利用固废磷石膏155.39 kg/m3,减少水泥消耗78.58 kg/m3,降低二氧化碳排放27.60 kg/m3。微观分析表明:二水磷石膏、钙矾石和C-S-H凝胶相互填充结合,形成互穿三维空间结构,同时通过引入POM纤维和木质纸浆纤维,使得基体、骨料与两种纤维形成了更为紧密的整体结构,这种结构的形成可进一步提高试件的整体力学性能。混掺磷石膏固废纤维增强水泥复合材料兼具良好力学性能和固废利用率,可为非承重绿色保温材料的发展提供参考。

     

  • 图  1  原状磷石膏(PG)粒度分布

    Figure  1.  In-situ phosphogypsum (PG) particle size distribution

    图  2  原状PG除杂改性处理

    Figure  2.  In-situ PG removal and modification treatment

    图  3  实验室流浆法制板设备与试验流程

    Figure  3.  Laboratory flow slurry method board equipment and test flow

    图  4  改性固废磷石膏混合料(MWPM)掺量与冻融抗折强度

    Figure  4.  Dosage and freeze-thaw flexural strength of modified solid waste phosphogypsum mix (MWPM)

    图  5  固废磷石膏(PG)集料掺量与冻融抗折强度

    Figure  5.  Solid waste phosphogypsum (PG) aggregate admixture and freeze-thaw flexural strength

    图  6  混掺固废磷石膏纤维增强水泥板技术路线

    Figure  6.  Fiber-reinforced cement composites with mixed solid waste and phosphogypsum technology route

    图  7  混掺固废磷石膏纤维增强水泥板的固废利用及有效降碳

    Figure  7.  Solid Waste Utilization and Effective Carbon Reduction of Mixed Solid Waste Phosphogypsum Fiber-Reinforced Cement Boards

    图  8  混掺固废磷石膏纤维增强水泥板的胶凝材料水化产物XRD图

    Figure  8.  XRD patterns of hydration products of cementitious materials of fiber-reinforced cement boards mixed with solid waste phosphogypsum

    图  9  混掺固废磷石膏纤维增强水泥板微观特性 SEM 图像

    Figure  9.  SEM images of microscopic properties of fiber-reinforced cement boards with mixed solid waste phosphogypsum

    表  1  混掺磷石膏固废纤维增强水泥板所用材料的混合比例

    Table  1.   Mixing ratios of materials used in mixed phosphogypsum solid waste fiber-reinforced cement boards

    Group Number MWPM/% PG aggregates/% Wood pulp fibers/% cement/% POM fibers/% Sand/% Number of specimens
    A 1 0 0 7.2 36 1 54 3
    2 3.24 0 7.2 32.76 1 54 3
    3 6.48 0 7.2 29.52 1 54 3
    4 9.72 0 7.2 26.28 1 54 3
    5 12.96 0 7.2 23.04 1 54 3
    B 1 6.48 0 7.2 29.52 1 54 3
    2 6.48 2.7 7.2 29.52 1 51.3 3
    3 6.48 5.4 7.2 29.52 1 49.6 3
    4 6.48 8.1 7.2 29.52 1 45.9 3
    5 6.48 10.8 7.2 29.52 1 43.2 3
    6 6.48 13.5 7.2 29.52 1 40.5 3
    7 6.48 16.2 7.2 29.52 1 37.8 3
    8 6.48 18.9 7.2 29.52 1 35.1 3
    9 6.48 21.6 7.2 29.52 1 32.4 3
    Note: POM—Polyoxymethylene
    下载: 导出CSV

    表  2  纤维水泥平板物理性能检测指标

    Table  2.   Physical property test indexes of fiber cement slabs

    Project Class A Class B
    Water absorption rate/% ≤28 ≤40
    Apparent density/(g·cm−3) ≥1.2
    Moisture content rate/% DS board ≤0.25 PS board ≤0.50
    Thermal conductivity /(W·(m·K)−1) ≤0.45 ≤0.35
    Frost resistance test Frost resistance Class A after 100 times, Class B after 25 times of freeze-thaw cycle, shall not appear rupture, delamination
    Flexural strength
    ratio /%
    ≥70
    Notes: DS boards are normal boards; PS boards are low compression boards.
    下载: 导出CSV

    表  3  纤维水泥板抗折强度

    Table  3.   Flexural strength of fiber cement boards

    Project Strength classification Class A/B
    Intensity level (Water-saturated strength/MPa) R1 4
    R2 7
    R3 13
    Note: R1, R2, and R3 are hierarchical divisions of a classification standard.
    下载: 导出CSV

    表  4  混掺固废磷石膏纤维增强水泥板相关基本物理性能

    Table  4.   Basic physical properties of fiber reinforced cement board with mixed solid waste phosphogypsum

    Group
    (Number)
    Apparent
    density /(g·cm−3)
    Water
    absorption /%
    Moisture
    content/%
    Porosity/% Moisture
    expansion
    rate/%
    Thermal
    conductivity/
    (W·(m·K)− 1)
    A 1 1.42 20.12 5.7 25.1 0.10 0.432
    2 1.40 20.10 5.6 24.9 0.10 0.431
    3 1.41 20.11 5.6 24.9 0.10 0.435
    4 1.41 20.11 5.6 25.0 0.10 0.434
    5 1.42 20.12 5.6 25.0 0.10 0.433
    Mean 1.4120 20.1120 5.6200 24.9800 0.1000 0.4330
    SD 0.0084 0.0084 0.0447 0.0837 0.0000 0.0016
    Var 0.0001 0.0001 0.0020 0.0070 0.0000 0.0000
    CV 0.59% 0.04% 0.80% 0.33% 0.00% 0.37%
    B 1 1.41 20.11 5.6 24.9 0.10 0.43
    2 1.40 20.11 5.6 24.9 0.10 0.435
    3 1.40 20.11 5.6 24.9 0.10 0.438
    4 1.40 20.11 5.6 24.9 0.10 0.434
    5 1.40 20.11 5.6 24.9 0.10 0.431
    6 1.39 20.11 5.6 24.9 0.10 0.431
    7 1.39 20.11 5.7 24.9 0.10 0.436
    8 1.39 20.11 5.7 24.9 0.10 0.433
    9 1.38 20.11 5.7 24.9 0.10 0.432
    Mean 1.3956 20.1100 5.6333 24.9000 0.1000 0.4333
    SD 0.0088 0.0000 0.0500 0.0000 0.0000 0.0026
    Var 0.0001 0.0000 0.0025 0.0000 0.0000 0.0000
    CV 0.63% 0.00% 0.89% 0.00% 0.00% 0.61%
    Note: Mean is the mean; SD is the standard deviation; Var is the variance and CV is the coefficient of variation..
    下载: 导出CSV

    表  5  混掺固废磷石膏纤维增强水泥板基准配合比

    Table  5.   Benchmark mixing ratio of fiber reinforced cement board with mixed solid waste phosphogypsum

    Materials Cement POM fibers Sand MWPM PG aggregate Wood pulp fibers
    Mass per m3 /(kg·m−3) 305-316 8-12 459-469 74-84 108-119 69-79
    Mixing ratio 31-32 1 46.5-47.5 7.5-8.5 11-12 7-8
    Note: POM is known as Polyoxymethylene, MWPM is known as Modified solid waste phosphogypsum mix.
    下载: 导出CSV

    表  6  混掺固废磷石膏纤维增强水泥板基准配合比与抗折强度表征量化关系

    Table  6.   Quantitative relationship between baseline mix ratio and flexural strength characterization of fiber-reinforced cement board with mixed solid waste phosphogypsum

    Group Ageing period/d Fitting results R²
    A 3 F(x,y,z) = −6.9286x2 + 0.3214x + 4.9474 0.9907
    7 F(x,y,z) = −10.786x2 + 2.6043x + 5.5183 0.9608
    28 F(x,y,z)= −20.643x2 + 6.1671x + 8.1671 0.8468
    B 3 F(x,y,z) = −58.249y3 + 20.149y2 + 0.6988y + 4.3147 0.9105
    7 F(x,y,z) = −64.646y3 + 19.697y2 + 0.0525y + 5.2236 0.9578
    28 F(x,y,z) = −63.098y3 − 7.912y2 + 5.5412y+ 9.0381 0.9465
    下载: 导出CSV
  • [1] 阎友华. 硅酸钙水泥板行业何以持续扩容? [N]. 中国建材报, 2023-04-03(001).

    YAN Youhua. How the calcium silicate cement board industry can continue to expand its capacity[N]. China Building Material News, 2023-04-03(001) (in Chinese).
    [2] 冯铭, 杨聪武. 浅谈硅酸钙板的生产与应用[J]. 新型建筑材料, 2012, 39(11): 82-84.

    FENG Ming, YANG Congwu Introduction to the production and application of calcium silicate board[J]. New Building Materials, 2012, 39( 11) : 82 - 84.
    [3] 程倩. 纤维水泥板/硅酸钙板类产品发展的探讨[J]. 混凝土世界, 2020, 134(8): 48-54.

    CHENG Qian. Discussion on the development of fibre cement board/calcium silicate board type products[J]. China Concrete, 2020, 134(8): 48-54.
    [4] 苏林强. 硅灰石尾矿在纤维水泥板中的应用研究[J]. 混凝土世界, 2022(06): 66-68.

    SU Linqiang, Study on the Application of Wollastonite Tailings in Fiber Cement Board[J]. China Concrete, 2022(06): 66-68(in Chinese).
    [5] 郭秋生, 耿春雷. 钼尾矿对纤维水泥板抗折强度的影响研究[J]. 混凝土与水泥制品, 2019, (8): 41-44.

    GUO Qiusheng, GENG Chunlei. The Effect Study of Molybdenum Tailings on Compressive Strength of Fiber Cement Board[J]. China Concrete and Cement Products, 2019, (8): 41-44(in Chinese).
    [6] 李阳, 王丽娜, 刘晓琴等. 高掺量砂光粉纤维水泥板的性能研究[J]. 混凝土世界, 2022, (9): 26-29. doi: 10.3969/j.issn.1674-7011.2022.09.008

    LI Yang, WANG Lina, LIU Xiaoqin et al. Performance Study on High Content Sanding Powder Fiber Cement Board[J]. China Concrete, 2022, (9): 26-29(in Chinese). doi: 10.3969/j.issn.1674-7011.2022.09.008
    [7] 程志斌. 风电叶片废料在纤维水泥板中的应用研究[J]. 江西建材, 2023, (1): 51-53. doi: 10.3969/j.issn.1006-2890.2023.01.019

    CHENG Zhibin. Application of Wind Turbine Blade Waste to Fiber Cement Board[J]. JIANG XI JIAN CAI, 2023, (1): 51-53(in Chinese). doi: 10.3969/j.issn.1006-2890.2023.01.019
    [8] Jalali J, Gaudin P, Capiaux H, et al. Fate and transport of metal trace elements from phosphogypsum piles in Tunisia and their impact on soil bacteria and wild plants[J]. Ecotoxicology and Environmental Safety, 2019, 174: 12-25. doi: 10.1016/j.ecoenv.2019.02.051
    [9] Tayibi H, Choura M, López F A, et al. Environmental impact and management of phosphogypsum[J]. Journal of environmental management, 2009, 90(8): 2377-2386. doi: 10.1016/j.jenvman.2009.03.007
    [10] Yang J, Liu W, Zhang L, et al. Preparation of load-bearing building materials from autoclaved phosphogypsum[J]. Construction and Building Materials, 2009, 23(2): 687-693. doi: 10.1016/j.conbuildmat.2008.02.011
    [11] A. M. Rashad, Phosphogypsum as a construction material, J. Clean. Prod. 166 (2017) 732–743.
    [12] Harrou A, Gharibi E K, Taha Y, et al. Phosphogypsum and black steel slag as additives for ecological bentonite-based materials: Microstructure and characterization[J]. Minerals, 2020, 10(12): 1067. doi: 10.3390/min10121067
    [13] 董泽, 翟延波, 任志威, 等. 磷石膏建材资源化利用研究进展[J]. 无机盐工业, 2022, 54(4): 5-9.

    DONG Ze ZHAI Yanbo REN Zhiwei, et al. Research progress on phosphogypsum utilization in building materials[J]. Inorganic Chemicals Industry, 2022, 54(4): 5-9(in Chinese).
    [14] 白海丹. 我国磷石膏综合利用形势及对策建议[J]. 磷肥与复肥, 2020, 35(12): 1-3. doi: 10.3969/j.issn.1007-6220.2020.12.002

    BAI Haidan. Situation and countermeasures of comprehensive utilization of phosphogypsum in China[J]. Phosphate & Compound Fertilizer, 2020, 35(12): 1-3(in Chinese). doi: 10.3969/j.issn.1007-6220.2020.12.002
    [15] Jiang G, Wu A, Wang Y, et al. Low cost and high efficiency utilization of hemihydrate phosphogypsum: Used as binder to prepare filling material[J]. Construction and building materials, 2018, 167: 263-270. doi: 10.1016/j.conbuildmat.2018.02.022
    [16] Taher M A. Influence of thermally treated phosphogypsum on the properties of Portland slag cement[J]. Resources, Conservation and Recycling, 2007, 52(1): 28-38. doi: 10.1016/j.resconrec.2007.01.008
    [17] Lutskiy D, Litvinova T, Ignatovich A, et al. Complex processing of phosphogypsum-A way of recycling dumps with reception of commodity production of wide application[J]. Journal of Ecological Engineering, 2018, 19(2): 221-225. doi: 10.12911/22998993/83562
    [18] Garg M, Minocha A K, Jain N. Environment hazard mitigation of waste gypsum and chalk: Use in construction materials[J]. Construction and Building Materials, 2011, 25(2): 944-949. doi: 10.1016/j.conbuildmat.2010.06.088
    [19] Değirmenci N. Utilization of phosphogypsum as raw and calcined material in manufacturing of building products[J]. Construction and Building Materials, 2008, 22(8): 1857-1862. doi: 10.1016/j.conbuildmat.2007.04.024
    [20] M. Singh, Treating waste phosphogypsum for cement and plaster manufacture, Cem. Concr. Res. 32 (2002) 1033–1038.
    [21] Altun İ A, Sert Y. Utilization of weathered phosphogypsum as set retarder in Portland cement[J]. Cement and Concrete Research, 2004, 34(4): 677-680. doi: 10.1016/j.cemconres.2003.10.017
    [22] Taher M A. Influence of thermally treated phosphogypsum on the properties of Portland slag cement[J]. Resources, Conservation and Recycling, 2007, 52(1): 28-38. doi: 10.1016/j.resconrec.2007.01.008
    [23] Kuryatnyk T, Da Luz C A, Ambroise J, et al. Valorization of phosphogypsum as hydraulic binder[J]. Journal of Hazardous Materials, 2008, 160(2-3): 681-687. doi: 10.1016/j.jhazmat.2008.03.014
    [24] Y. Huang, Z. Lin, Investigation on phosphogypsum-steel slag-granulated blastfurnace slag-limestone cement, Constr. Build. Mater. 24 (7) (2010) 1296–1301.
    [25] Z. S. Lin, H. D. Shi, E. Beguedou, Effect of Polycarboxylate Superplasticizer on Properties of Phosphogypsum-Based Cement, Key Eng. Mater. 1730 (2012).
    [26] 林宗寿, 黄赟. 磷石膏基免煅烧水泥的开发研究[J]. 武汉理工大学学报, 2009, 31(4): 53-55+62. doi: 10.3963/j.issn.1671-4431.2009.04.015

    LIN Zongshou, HUANG Yun. Investigation on Phosphogypsum-base Non-calcined Cement[J]. Journal of Wuhan University of Technology, 2009, 31(4): 53-55 (in Chinese). doi: 10.3963/j.issn.1671-4431.2009.04.015
    [27] 吴卫平, 刘晓琴, 赵荘荘, 等. 草浆纤维水泥板的制备及板材性能分析[J]. 混凝土世界, 2019, (8): 68-71. doi: 10.3969/j.issn.1674-7011.2019.08.011

    WU Weiping, LIU Xiaoqin, ZHAO Zhuangzhuang, etc. Preparation of grass-pulp fibre cement board and analysis of board properties[J]. China Concrete, 2019, (8): 68-71 (in Chinese). doi: 10.3969/j.issn.1674-7011.2019.08.011
    [28] 郑玉龙, 嵇帅, 陆春华, 等. 基于固废磷石膏制备胶凝材料的工艺与机制[J]. 复合材料学报, 2024, 41(03): 1436-1446.

    ZHENG Yulong, JI Shuai, LU Chunhua, et al. Preparation technology and mechanism of cementitious material based on solid waste phosphogypsum[J]. Acta Materiae Compositae Sinica, 2024, 41: (in Chinese).
    [29] 万奕杰, 杨畅, 代超越等. 不同类型纤维增强水泥砂浆力学性能研究[J]. 江苏建筑, 2023, (4): 121-125. doi: 10.3969/j.issn.1005-6270.2023.04.027

    WAN Yijie, YANG Chang, DAI Chaoyue. et al. Research on Mechanical Properties of Cement Mortar with Different Type Fiber.[J]. Jiangsu Construction, 2023, (4): 121-125(in Chinese). doi: 10.3969/j.issn.1005-6270.2023.04.027
    [30] 刘知音. 木纤维混凝土抗压强度和导热系数研究[D]. 西安建筑科技大学, 2020.

    LIU Zhiyin Research on compressive strength and thermal conductivity of wood fiber concrete. [D]. Xi’an University of Architecture and Technology. 2020. (in Chinese).
    [31] 纤维水泥制品试验方法. GB/T 7019-2014, [S]. Test methods for fiber cement prdoucts. GB/T 7019-2014, [S](in Chinese).
    [32] 中国建筑材料联合会. 无石棉纤维水泥平板: JC/T 412.1—2018[S]. 北京: 中国建材工业出版社, 2018.

    China Building Materials Federation. Asbestos-free fibre cement flat slab: jc/t 412.1-2018 [S]. Beijing: China building materials industry press, 2018(in Chinese).
    [33] 蔡博峰, 朱松丽, 于胜民等. 《IPCC 2006年国家温室气体清单指南2019修订版》解读[J]. 环境工程, 2019, 37(8): 1-11.

    CAI Bofeng, ZHU Songli, YU Shengmin et al. Interpretation of the 2019 Revision of the IPCC 2006 Guidelines for National Greenhouse Gas Inventories[J]. Environmental Engineering, 2019, 37(8): 1-11 (in Chinese).
    [34] 方群, 谢国俊, 曹元辉等. 水泥企业二氧化碳排放核算方法简介[J]. 水泥, 2022, (6): 5-7.

    FANG Qun, XIE Guojun, CAO Yuanhui et al. Introduction to carbon dioxide emission accounting methods for cement enterprises[J]. Cement, 2022, (6): 5-7(in Chinese).
  • 加载中
计量
  • 文章访问数:  47
  • HTML全文浏览量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-18
  • 修回日期:  2024-05-07
  • 录用日期:  2024-05-18
  • 网络出版日期:  2024-06-17

目录

    /

    返回文章
    返回