留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型胶原-腐植酸钠复合水凝胶的研制与分析

田振华 何静瑄 王颖

田振华, 何静瑄, 王颖. 新型胶原-腐植酸钠复合水凝胶的研制与分析[J]. 复合材料学报, 2022, 40(0): 1-10
引用本文: 田振华, 何静瑄, 王颖. 新型胶原-腐植酸钠复合水凝胶的研制与分析[J]. 复合材料学报, 2022, 40(0): 1-10
Zhenhua TIAN, Jingxuan HE, Ying WANG. Development and analysis of a novel collagen-sodium humate composite hydrogel[J]. Acta Materiae Compositae Sinica.
Citation: Zhenhua TIAN, Jingxuan HE, Ying WANG. Development and analysis of a novel collagen-sodium humate composite hydrogel[J]. Acta Materiae Compositae Sinica.

新型胶原-腐植酸钠复合水凝胶的研制与分析

基金项目: 陕西省自然科学基础研究计划项目(2019JQ-027);国家自然科学基金项目(21706151);陕西省教育厅专项科研计划项目(21JK0549)
详细信息
    通讯作者:

    田振华,博士,讲师,硕士生导师,研究方向为胶原基生物材料的设计 E-mail: tian_amb@163.com

  • 中图分类号: TB332

Development and analysis of a novel collagen-sodium humate composite hydrogel

  • 摘要: 水凝胶具有弹性高、含水量高,冷效应、保湿性强、形状多变等优点,是医用敷料的主要材料之一。将具有优良生物相容性、促细胞增殖功能的胶原(COL)与具有止血、消炎等作用的腐植酸钠(NaHA)按不同比例(COL∶NaHA)共混并采用自组装方式制备了一种新型胶原-腐植酸钠复合水凝胶,并考察两者间的相互作用以及复合水凝胶的结构与性能,以期应用于医用敷料行业。NaHA不改变胶原的三股螺旋结构且两者之间存在氢键与静电作用。当COL∶NaHA ≥ 4∶6时,两者间的静电结合被NaCl所屏蔽,因此体系相容性较好;然而继续增加NaHA会引起聚沉现象。当COL∶NaHA = 4∶6时,两者结合率最高,达到93.2%且相容性较好,复合水凝胶的纤维具有明显的D-周期且各方面性能最佳。NaHA的释放较为缓慢,24 h后仍有~80%保留在水凝胶中;热稳定性较纯胶原提升了34.9°C;储能模量和损耗模量分别为31.89和3.99 Pa。此外,随着NaHA的加入,冻干复合水凝胶的孔径缩小、孔隙分布更加均匀;复合膜的亲水性明显提升。

     

  • 图  1  腐植酸钠浓度与吸光度关系曲线

    Figure  1.  The relationship curve of NaHA concentration and absorbance

    图  2  COL-NaHA复合水凝胶的外观图

    Figure  2.  Appearances of COL-NaHA composite hydrogels

    图  3  COL-NaHA复合水凝胶的电泳图

    Figure  3.  Electrophoretic pattern of COL-NaHA composite hydrogels

    图  4  COL-NaHA复合物的红外全谱图(a)和放大谱图(b)(a: COL, b: COL-NaHA-82, c: COL-NaHA-64, d: COL-NaHA-55, e: COL-NaHA-46, f: COL-NaHA-28, g: NaHA)

    Figure  4.  FITR spectra (a) and enlarge spectra (b) of COL-NaHA composites (a: COL, b: COL-NaHA-82, c: COL-NaHA-64, d: COL-NaHA-55, e: COL-NaHA-46, f: COL-NaHA-28, g: NaHA)

    图  5  COL-NaHA复合水凝胶的原子力显微镜扫描图(a)、(b): COL, (c)、(d): COL-NaHA-64, (e)、(f): COL-NaHA-55, (g)、(h): COL-NaHA-46

    Figure  5.  AFM images of COL-NaHA composite hydrogels (a) and (b): COL, (c) and (d): COL-NaHA-64, (e) and (f): COL-NaHA-55, (g) and (h): COL-NaHA-46

    图  6  离心后纤维中NaHA与胶原的结合率(a)以及在PBS中浸泡若干天后纤维中NaHA的剩余结合率(b)

    Figure  6.  Percentage of NaHA incorporated into collagen fibrils after centrifugation (a) and the retained percentage of NaHA after soaking in PBS solution for several days (b)

    图  7  复合水凝胶(a)和复合膜(b)中腐植酸钠的释放率

    Figure  7.  Release ratios of NaHA in hydrogels (a) and films (b)

    图  8  COL-NaHA复合水凝胶的储能模量 G' (a)和损耗模量 G" (b)

    Figure  8.  Storage modulus G' (a) and loss modulus G" (b) of COL-NaHA composite hydrogels

    图  9  COL-NaHA复合膜的水接触角

    Figure  9.  Water contact angle of COL-NaHA composite films

    图  10  冻干COL-NaHA复合水凝胶的DSC曲线

    Figure  10.  DSC thermograms of lyophilized COL-NaHA composite hydrogels

    图  11  冻干COL-NaHA复合水凝胶的SEM图(a): COL (b): COL-NaHA-82 (c): COL-NaHA-64 (d): COL-NaHA-55 (e): COL-NaHA-46 (f): COL-NaHA-28

    Figure  11.  SEM images of lyophilized COL-NaHA composite hydrogels; (a): COL (b): COL-NaHA-82 (c): COL-NaHA-64 (d): COL-NaHA-55 (e): COL-NaHA-46 (f): COL-NaHA-28

    表  1  胶原-腐植酸钠(COL-NaHA)复合水凝胶的制备配方

    Table  1.   Formulations of Collagen-Sodium humate (COL-NaHA) composite hydrogels

    Sample c COL/
    (mg·mL −1)
    c NaHA/
    (mg·mL −1)
    COL:NaHA
    COL 5.00 0 10:0
    COL-NaHA-82 5.00 1.25 8:2
    COL-NaHA-64 5.00 3.33 6:4
    COL-NaHA-55 5.00 5.00 5:5
    COL-NaHA-46 5.00 7.50 4:6
    COL-NaHA-28 5.00 20.00 2:8
    Note: c COL and c NaHA were the concentrations of collagen and NaHA in COL-NaHA hydrogels, respectively.
    下载: 导出CSV
  • [1] LI S, WANG L, ZHENG W, et al. Rapid Fabrication of Self-Healing, Conductive, and Injectable Gel as Dressings for Healing Wounds in Stretchable Parts of the Body[J]. Advanced Functional Materials,2020,30(31):2002370. doi: 10.1002/adfm.202002370
    [2] MOHAMADI S, NOROOZNEZHAD A H, MOSTAFAEI S, et al. A randomized controlled trial of effectiveness of platelet-rich plasma gel and regular dressing on wound healing time in pilonidal sinus surgery: Role of different affecting factors[J]. Biomedical Journal,2019,42(6):403-410. doi: 10.1016/j.bj.2019.05.002
    [3] Stevenson F J. Humus chemistry: genesis, composition, reactions[M]. 2nd ed. New York: John Wiley & Sons, 1994.
    [4] 顾刚果, 耿宝琴, 雍定国. 黄腐植酸钠的抗凝作用[J]. 现代应用药学, 1988, 4(5):8,41.

    GU Gangguo, GENG Baoqin, YONG Dingguo. Anticoagulant effect of sodium xanthate[J]. Application of modern medicine,1988,4(5):8,41(in Chinese).
    [5] JI Y, ZHANG A, CHEN X, et al. Sodium humate accelerates cutaneous wound healing by activating TGF-beta/Smads signaling pathway in rats[J]. Acta Pharmaceutica Sinica B,2016,6(2):132-140. doi: 10.1016/j.apsb.2016.01.009
    [6] 张爱军, 顾慧莹, 闫志勇, 等. 不同基质和pH值的腐植酸钠凝胶剂对大鼠皮肤创伤愈合的影响[J]. 中国药房, 2013, 21(24):1933-1935.

    ZHANG Aijun, GU Huiying, YAN Zhiyong, et al. Effect of sodium humic gel with different matrix and pH on wound healing of rats[J]. China Drug Store,2013,21(24):1933-1935(in Chinese).
    [7] 顾其胜, 王帅帅, 王庆生, 等. 海藻酸盐敷料应用现状与研究进展[J]. 中国修复重建外科杂志, 2014, 28(2):255-258. doi: 10.7507/1002-1892.20140055

    GU Qisheng, WANG Shuaishuai, WANG Qingsheng, et al. Application status and research progress of alginate dressing[J]. Chinese Journal of Reparative and Reconstructive Surgery,2014,28(2):255-258(in Chinese). doi: 10.7507/1002-1892.20140055
    [8] JIN J, JI Z, XU M, et al. Microspheres of Carboxymethyl Chitosan, Sodium Alginate, and Collagen as a Hemostatic Agent in Vivo[J]. ACS Biomaterials Science & Engineering,2018,4(7):2541-2551.
    [9] LIU X, ZHENG M, WANG X, et al. Biofabrication and Characterization of Collagens with Different Hierarchical Architectures[J]. ACS Biomaterials Science & Engineering,2020,6(1):739-748.
    [10] SUN L, LI B, SONG W, et al. Comprehensive assessment of Nile tilapia skin collagen sponges as hemostatic dressings[J]. Materials Science and Engineering:C,2020,109:110532. doi: 10.1016/j.msec.2019.110532
    [11] 刘晨阳, 马建中, 张跃宏. 胶原蛋白基纳米复合材料的性能及界面研究进展[J]. 复合材料学报, 2021, 38(06):1691-1702.

    LIU Chenyang, MA Jianzhong, ZHANG Yuehong. Progress on properties and interface of collagen-based nanocomposites[J]. Acta Materiae Compositae Sinica,2021,38(06):1691-1702(in Chinese).
    [12] MORGENSTERN L, MICHEL S L, AUSTIN E. Control of hepatic bleeding with microfibrillar collagen[J]. Archives of Surgery,1977,112:941-943. doi: 10.1001/archsurg.1977.01370080039005
    [13] DOILLON C J, WHYNE C F, BRANDWEIN S, et al. Collagen-based wound dressings: Control of the pore structure and morphology[J]. Journal of Biomedical Materials Research,1986,20:1219-1228. doi: 10.1002/jbm.820200811
    [14] DOILLON C J, SILVER F H. Collagen-based wound dressing: Effects of hyaluronic acid and firponectin on wound healing[J]. Biomaterials,1986,7(1):3-8. doi: 10.1016/0142-9612(86)90080-3
    [15] BHASKAR K, MOHAN C K, LINGAM M, et al. Development of SLN and NLC enriched hydrogels for transdermal delivery of nitrendipine: in vitro and in vivo characteristics[J]. Drug Development and Industrial Pharmacy,2009,35(1):98-113. doi: 10.1080/03639040802192822
    [16] TEZGEL Ö, DISTASIO N, LAGHEZZA-MASCI V, et al. Collagen scaffold-mediated delivery of NLC/siRNA as wound healing materials[J]. Journal of Drug Delivery Science and Technology,2020,55:101421. doi: 10.1016/j.jddst.2019.101421
    [17] LAGHEZZA MASCI V, TADDEI A R, COURANT T, et al. Characterization of Collagen/Lipid Nanoparticle-Curcumin Cryostructurates for Wound Healing Applications[J]. Macromolecular Bioscience,2019,19(5):e1800446. doi: 10.1002/mabi.201800446
    [18] RIEDE U N, JONAS I, KIRN B, et al. Collagen stabilization induced by natural humic substances[J]. Archiveso f Orthopaedic and Trauma Surgery,1992,111:259-264. doi: 10.1007/BF00571520
    [19] GERT J K, ROBERT E M H. Experiments on Collagen-Humic Interactions Speed of Humic Uptake, and Effects of Diverse Chemical Treatments[J]. Journal of Archaeological Science,1995,22:263-270. doi: 10.1006/jasc.1995.0028
    [20] LAEMMLI U K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4[J]. Nature,1970,277:680-685.
    [21] PIETRUCHA K. Changes in denaturation and rheological properties of collagen–hyaluronic acid scaffolds as a result of temperature dependencies[J]. International Journal of Biological Macromolecules,2005,36(5):299-304. doi: 10.1016/j.ijbiomac.2005.07.004
    [22] DING C, ZHANG M, LI G. Preparation and characterization of collagen/hydroxypropyl methylcellulose (HPMC) blend film[J]. Carbohydrate Polymers,2015,119:194-201. doi: 10.1016/j.carbpol.2014.11.057
    [23] Sadtler Spectral HandBooks[M]. 1st ed. Berkeley: Bio-Rad Laboratories, Inc. , 1978-2004.
    [24]
    [25] 易菊珍, 梁子倩, 张黎明. 腐植酸钠/聚丙烯酰胺水凝胶吸水性能的研究[J]. 中山大学学报(自然科学版), 2007, 46(2):36-40. doi: 10.3321/j.issn:0529-6579.2007.02.010

    YI Juzhen, LIANG Ziqian, ZHANG Liming. Studies on sodium humate/polyacrylamide hydrogels (I) synthesis and water absorption properties[J]. Journal of Sun Yat-sen University (Medical Sciences),2007,46(2):36-40(in Chinese). doi: 10.3321/j.issn:0529-6579.2007.02.010
    [26] 丁翠翠. 胶原/HPMC共混体系中大分子相互作用及相态转变特性研究[D]. 成都: 四川大学, 2015.

    DING Cuicui. Macromolecular interaction and phase transition in collagen /HPMC blends[D]. Chengdu: Sichuan University, 2015. (in Chinese)
    [27] LI Y P. The mechanism of collagen self-assembly: Hydrophobic and electrostatic interactions[D]. Gainesville: The university of Florida, 2009.
    [28] PIELESZ A. Temperature-dependent FTIR spectra of collagen and protective effect of partially hydrolysed fucoidan[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2014,118:287-293. doi: 10.1016/j.saa.2013.08.056
    [29] 田振华, 何静瑄, 王颖, 等. 基于二维红外技术研究氧化羧甲基纤维素钠/胶原的相互作用及热稳定性[J]. 光谱学与光谱分析, 2021, 9(41):2782-2788.

    TIAN Zhenhua, HE Jingxuan, WANG Ying, et al. Interaction and Thermal Stability of Oxidized Carboxymethyl Cellulose/Collagen based on Two-dimensional Infrared Spectroscopy[J]. Spectroscopy and Spectral Analysis,2021,9(41):2782-2788(in Chinese).
    [30] TIAN H L, LI C H, LIU W T, et al. The influence of chondroitin 4-sulfate on the reconstitution of collagen fibrils in vitro[J]. Colloids and Surfaces B:Biointerfaces,2013,105:259-266. doi: 10.1016/j.colsurfb.2013.01.005
    [31] DING C, ZHANG M, TIAN H, et al. Effect of hydroxypropyl methylcellulose on collagen fibril formation in vitro[J]. International Journal of Biological Macromolecules,2013,52:319-326. doi: 10.1016/j.ijbiomac.2012.10.003
    [32] LEE H-J, AHN S-H, KIM G H. Three-Dimensional Collagen/Alginate Hybrid Scaffolds Functionalized with a Drug Delivery System (DDS) for Bone Tissue Regeneration[J]. Chemistry of Materials,2011,24(5):881-891.
    [33] PARK J-H, LEE G-S, SHIN U S, et al. Self-Hardening Microspheres of Calcium Phosphate Cement with Collagen for Drug Delivery and Tissue Engineering in Bone Repair[J]. Journal of the American Ceramic Society,2011,94(2):351-354. doi: 10.1111/j.1551-2916.2010.04314.x
    [34] ARAFAT M T, TRONCI G, WOOD D J, et al. In-situ crosslinked wet spun collagen triple helices with nanoscale-regulated ciprofloxacin release capability[J]. Materials Letters,2019,255:126550. doi: 10.1016/j.matlet.2019.126550
    [35] FRANCIS-SEDLAK M E, URIEL S, LARSON J C, et al. Characterization of type I collagen gels modified by glycation[J]. Biomaterials,2009,30(9):1851-1856. doi: 10.1016/j.biomaterials.2008.12.014
    [36] WU K J, WANG C Y, LU H K. Effect of glutaraldehyde on the humoral immunogenicity and structure of porcine dermal collagen membranes[J]. Archives of Oral Biology,2004,49(4):305-311. doi: 10.1016/j.archoralbio.2003.10.002
  • 加载中
计量
  • 文章访问数:  82
  • HTML全文浏览量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-14
  • 录用日期:  2022-03-12
  • 修回日期:  2022-02-23
  • 网络出版日期:  2022-03-30

目录

    /

    返回文章
    返回