Research progress of functional composite electrode materials based on nanocellulose
-
摘要:
目的 人类社会的发展对能源的需求急剧增加。化石燃料的枯竭以及由此造成的环境破坏和全球变暖使得开发可持续能源以及可再生能源存储和转换系统技术变得至关重要。因此,寻找资源丰富的生物质材料和低成本的生产技术手段用以制备储能设备是实现绿色可持续发展的关键。 方法 针对纳米纤维素的分类、制备方法、改性以及纳米纤维素基复合材料进行总结,重点介绍纳米纤维素与电活性物质混合以及基于纳米纤维素制备的水凝胶、气凝胶、纸/膜复合材料和作为碳前驱体在储能电极领域的应用和研究进展。 结果 从大量文献中分析得出,在储能设备电极材料中,纳米纤维素与电活性物质结合制备的纳米纤维素基复合电极材料主要分为四类:(1)纳米纤维素水凝胶:一种含水却不溶于水的聚合物,具有交联多孔三维网状结构、大比表面积、密度低、生物相容性和良好的柔韧性。近年来,由纳米纤维素或纤维素衍生物和导电材料组成水凝胶的制备取得了显著的进展。导电纤维素水凝胶可通过共混、包覆或将导电材料掺杂到纤维素基质中制备。结果显示纳米纤维素水凝胶作为储能设备的电极材料,其导电性有了显著提高,力学性能也得到了增强,同时,石墨烯、碳纳米管和聚苯胺的团聚现象也得到了良好的改善;(2)纳米纤维素气凝胶:兼具传统气凝胶的大比表面积、高孔隙率和质量小等特点以及纤维素的可持续、生物相容性等自身优良特性,是具有连续的三维多孔网络的一类特殊材料。多孔性为电解质离子提供额外的吸附位点从而改善储能能力,与聚吡咯、石墨纳米片或金属氧化物相结合,可为电子迁移提供有效扩散通道和静电吸引的多个活性位点,制备出的复合电极材料使储能设备具有高比电容、良好的循环稳定性和能量密度;(3)纳米纤维素纸/膜:纸张具备高溶剂吸收和与纳米材料强结合的固有特性,且纳米纤维素中的纤维素纤维可形成强韧的网络,赋予材料优异的柔韧性,从而制备出质量轻、热/化学稳定性好等优点的纳米纤维素纸/膜,与导电材料结合后,可实现低成本、轻便高性能的储能电极材料;(4)纳米纤维素碳前驱体:在惰气气氛下对纳米纤维素进行高温热解,经碳化后转化为导电碳材料。在碳化过程中使材料产生大孔,所得复合材料具备三维互联蜂窝状分层网络结构和结构稳定性,被广泛应用于超级电容器、锂离子电池等电极材料中,最终可获得高功率密度和能量密度的电极材料。 结论 作为一种天然的纳米生物材料,纳米纤维素具有资源丰富、环境友好以及优异的力学性等优点,可与电活性物质结合制备出具有独特结构和优异电化学性能的复合材料,作为储能系统的电极材料可最大限度地提高柔韧性和电化学性能。然而,纳米纤维素的高生产成本和搭载的导电物质可能存在难降解的问题依然存在,因此实现环保工艺生产,开发易于回收的系统需在未来研究中加以解决。 Abstract: The ongoing surge in demand for energy and the increasing environmental crisis makes the high-performance energy storage device become a research hotspot in recent years. Based on the power and energy density, energy storage devices can be divided into electrochemical capacitors, secondary batteries, and fuel cells, etc. Electrode material play an important role in the preparation of energy storage with green environment protection and high performance. Nanocellulose has great application potential and development prospect in the preparation and performance improvement of energy storage materials due to their natural abundance, environmental sustainability, high specific surface area, excellent mechanical properties and biocompatibility. In this paper, the classification, preparation, modification of nanocellulose and nanocellulose composites were summarized, the application and research progress of the mixing of nanocellulose with electroactive substances and the preparation of hydrogel, aerogel, paper/film composites based on nanocellulose and as carbon precursors in electrode materials were mainly introduced. -
图 4 脱木素木材沉积聚吡咯(PPy) (DWP)、2, 2, 6, 6-四甲基哌啶氧化法(TEMPO)氧化DWP周期分别为1~3 h (TDWP-1、TDWP-2、TDWP-3)电极的电化学性能[23]:(a) 10 mV/s扫描速率下的CV曲线;(b)扫描速率为30 mA/cm−2时的电容保持率
Figure 4. Electrochemical performance of delignified wood deposits polypyrrole (PPy) (DWP), the period of 2, 2, 6, 6-tetramethylpiperidine oxidation (TEMPO) oxidizing DWP is 1-3 h (TDWP-1, TDWP-2, TDWP-3) electrodes[23]: (a) CV curves at 10 mV/s scan rate; (b) Capacitance retention rate at scan rate of 30 mA/cm−2
图 5 高导电性碳纳米管纸[25]:(a)在商业纸上直接印刷碳纳米管;(b)不同半径弯曲导电纸后的薄层电阻变化
R/R0—Ratio of resistance after bending to resistance before bending
Figure 5. Highly conductive carbon nanotube paper[25]: (a) Direct printing of carbon nanotubes on commercial paper; (b) Sheet resistance changes after bending the conductive paper at different radii
图 7 纳米纤维素在薄膜应用[31]:(a)独立电极制造工艺示意图;((b), (c))碳纳米管(CNT)-CNC800的截面形貌
CNC—Cellulose nanocrystal; EC—Ethylene carbonate; DEC—Diethyl carbonate
Figure 7. Nanocellulose in thin film applications[31]: (a) Schematic illustration of the free-standing electrode fabrication process; ((b), (c)) Cross-section morphologies of carbon nanotube (CNT)-CNC800
-
[1] NARGATTI K I, SUBHEDAR A R, AHANKARI S S, et al. Nanocellulose-based aerogel electrodes for supercapacitors: A review[J]. Carbohydrate Polymers,2022,297:120039. doi: 10.1016/j.carbpol.2022.120039 [2] CAO L H, LI H L, XU Z X, et al. Comparison of the heteroatoms-doped biomass-derived carbon prepared by one-step nitrogen-containing activator for high performance supercapacitor[J]. Diamond and Related Materials,2021,114:108316. doi: 10.1016/j.diamond.2021.108316 [3] KIM J H, SHIM B S, KIM H S, et al. Review of nanocellulose for sustainable future materials[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2015,2(2):197-213. doi: 10.1007/s40684-015-0024-9 [4] NOREMYLIA M B, HASSAN M Z, ISMAIL Z. Recent advancement in isolation, processing, characterization and applications of emerging nanocellulose: A review[J]. International Journal of Biological Macromolecules,2022,206:954-976. doi: 10.1016/j.ijbiomac.2022.03.064 [5] YANG Y, CHEN Z, ZHANG J, et al. Preparation and applications of the cellulose nanocrystal[J]. International Journal of Polymer Science,2019,2019:1767028. [6] 贺晓凌, 张先楠, 孟红艳, 等. 响应面法优化产细菌纤维素菌发酵条件[J]. 天津工业大学学报, 2020, 39(3):54-60. doi: 10.3969/j.issn.1671-024x.2020.03.009HE Xiaoling, ZHANG Xiannan, MENG Hongyan, et al. The response surface method optimizes the fermentation conditions of bacteria-producing cellulose bacteria[J]. Jour-nal of Tianjin Polytechnic University,2020,39(3):54-60(in Chinese). doi: 10.3969/j.issn.1671-024x.2020.03.009 [7] WANG J, LIU X, JIN T, et al. Preparation of nanocellulose and its potential in reinforced composites: A review[J]. Journal of Biomaterials Science-Polymer Edition,2019,30(11):919-946. doi: 10.1080/09205063.2019.1612726 [8] HERRICK F W, CASEBIER R L, HAMILTON J K, et al. Microfibrillated cellulose: Morphology and accessibility[J]. Journal of Applied Polymer Science,1983, 37: 797-813. [9] WANG Q, ZHAO X, ZHU J Y. Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs)[J]. Industrial & Engineering Chemistry Research,2014,53(27):11007-11014. [10] LIU Y, GUO B, XIA Q, et al. Efficient cleavage of strong hydrogen bonds in cotton by deep eutectic solvents and facile fabrication of cellulose nanocrystals in high yields[J]. ACS Sustainable Chemistry & Engineering,2017,5(9):7623-7631. [11] 杨严仲, 高旭, 席蓓, 等. 纳米纤维素在复合材料领域的研究进展[J]. 山东化工, 2022, 51(16):118-120. doi: 10.3969/j.issn.1008-021X.2022.16.033YANG Yanzhong, GAO Xu, XI Bei, et al. Research progress of nanocellulose in the field of composite materials[J]. Shandong Chemical Industry,2022,51(16):118-120(in Chinese). doi: 10.3969/j.issn.1008-021X.2022.16.033 [12] KULANDAIVALU S, SULAIMAN Y. Recent advances in layer-by-layer assembled conducting polymer based composites for supercapacitors[J]. Energies,2019,12(11):2107. doi: 10.3390/en12112107 [13] MO M M, CHEN C C, GAO H, et al. Wet-spinning assembly of cellulose nanofibers reinforced graphene/polypyrrole microfibers for high performance fiber-shaped supercapacitors[J]. Electrochimica Acta,2018,269:11-20. doi: 10.1016/j.electacta.2018.02.118 [14] EL-SAID W A, ABDELSHAKOUR M, CHOI J H, et al. Application of conducting polymer nanostructures to electrochemical biosensors[J]. Molecules,2020,25(2):307. doi: 10.3390/molecules25020307 [15] WANG Z H, TAMMELA P, ZHANG P, et al. Freestanding nanocellulose-composite fibre reinforced 3D polypyrrole electrodes for energy storage applications[J]. Nanoscale,2014,6(21):13068-13075. doi: 10.1039/C4NR04642K [16] MA Y P, XIE X B, YANG W Y, et al. Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors[J]. Advanced Composites and Hybrid Materials,2021,4(4):906-924. doi: 10.1007/s42114-021-00358-2 [17] WU M S, XU W H. Nickel nanoparticles embedded in partially graphitic porous carbon fabricated by direct carbonization of nickel-organic framework for high-performance supercapacitors[J]. Journal of Power Sources,2015,274:1055-1062. doi: 10.1016/j.jpowsour.2014.10.133 [18] WEI Q L, XIONG F Y, TAN S S, et al. Porous one-dimensional nanomaterials: Design, fabrication and applications in electrochemical energy storage[J]. Advanced Materials,2017,29(20):1602300. doi: 10.1002/adma.201602300 [19] CHEN Y, LU K, SONG Y, et al. A skin-inspired stretchable, self-healing and electro-conductive hydrogel with asynergistic triple network for wearable strain sensors applied in human-motion detection[J]. Nanomaterials (Basel),2019,9(12):1737. doi: 10.3390/nano9121737 [20] HSU H H, LIU Y Q, WANG Y, et al. Mussel-inspired autonomously self-healable all-in-one supercapacitor with biocompatible hydrogel[J]. ACS Sustainable Chemistry & Engineering,2020,8(18):6935-6948. [21] HAN J Q, DING Q Q, MEI C T, et al. An intrinsically self-healing and biocompatible electroconductive hydrogel based on nanostructured nanocellulose-polyaniline complexes embedded in a viscoelastic polymer network towards flexible conductors and electrodes[J]. Electrochimica Acta,2019,318:660-672. doi: 10.1016/j.electacta.2019.06.132 [22] LI Z Y, LI X, JIANG Y F, et al. Nanocellulose composite gel with high ionic conductivity and long service life for flexible zinc-air battery[J]. Polymer Testing,2021,104:107380. doi: 10.1016/j.polymertesting.2021.107380 [23] HE W, QIANG H, LIANG S, et al. Hierarchically porous wood aerogel/polypyrrole (PPy) composite thick electrode for supercapacitor[J]. Chemical Engineering Journal,2022,446(5):137331. [24] 葛溢. 基于纤维素/石墨烯复合气凝胶的水系锌离子电池正极材料制备与性能[D]. 南昌: 东华理工大学, 2018: 73.GE Yi. Preparation and properties of zinc ion battery cathode materials based on cellulose/graphene composite aerogel[D]. Nanchang: East China University of Technology, 2018: 73(in Chinese). [25] HU L, CHOI J W, YANG Y, et al. Highly conductive paper for energy-storage devices[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(51):21490-21494. doi: 10.1073/pnas.0908858106 [26] JABBOUR L, DESTRO M, CHAUSSY D, et al. Flexible cellulose/LiFePO4 paper-cathodes: Toward eco-friendly all-paper Li-ion batteries[J]. Cellulose,2013,20(1):571-582. doi: 10.1007/s10570-012-9834-x [27] FANG Z, HOU G, CHEN C, et al. Nanocellulose-based films and their emerging applications[J]. Current Opinion in Solid State and Materials Science,2019,23(4):100764. doi: 10.1016/j.cossms.2019.07.003 [28] WANG Z, PAN R, RUAN C, et al. Redox-active separators for lithium-ion batteries[J]. Advanced Science (Weinh),2018,5(3):1700663. doi: 10.1002/advs.201700663 [29] WALTERS C M, MATHARU G K, HAMAD W Y, et al. Chiral nematic cellulose nanocrystal/germania and carbon/germania composite aerogels as supercapacitor materials[J]. Chemistry of Materials,2021,33(13):5197-5209. doi: 10.1021/acs.chemmater.1c01272 [30] LIU Y, CHEN J, LIU Z, et al. Facile fabrication of Fe3O4 nanoparticle/carbon nanofiber aerogel from Fe-ion cross-linked cellulose nanofibrils as anode for lithium-ion battery with superhigh capacity[J]. Journal of Alloys and Compounds,2020,829:154541. doi: 10.1016/j.jallcom.2020.154541 [31] NGUYEN H K, BAE J, HUR J, et al. Tailoring of aqueous-based carbon nanotube-nanocellulose films as self-standing flexible anodes for lithium-ion storage[J]. Nanomaterials,2019,9(4):655. doi: 10.3390/nano9040655 [32] HUANG Y, ZHU C L, YANG J Z, et al. Recent advances in bacterial cellulose[J]. Cellulose,2014,21(1):1-30. doi: 10.1007/s10570-013-0088-z [33] YU W D, LIN W R, SHAO X F, et al. High performance supercapacitor basedon Ni3S2/carbon nanofibers and carbon nanofibers electrodes derived from bacterial cellulose[J]. Journal of Power Sources,2014,272:137-143. doi: 10.1016/j.jpowsour.2014.08.064 -