留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米纤维素基功能性复合电极材料的研究进展

张冬妍 杜珂珂 吴晓峰 张双保

张冬妍, 杜珂珂, 吴晓峰, 等. 纳米纤维素基功能性复合电极材料的研究进展[J]. 复合材料学报, 2023, 40(8): 4318-4326. doi: 10.13801/j.cnki.fhclxb.20230228.001
引用本文: 张冬妍, 杜珂珂, 吴晓峰, 等. 纳米纤维素基功能性复合电极材料的研究进展[J]. 复合材料学报, 2023, 40(8): 4318-4326. doi: 10.13801/j.cnki.fhclxb.20230228.001
ZHANG Dongyan, DU Keke, WU Xiaofeng, et al. Research progress of functional composite electrode materials based on nanocellulose[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4318-4326. doi: 10.13801/j.cnki.fhclxb.20230228.001
Citation: ZHANG Dongyan, DU Keke, WU Xiaofeng, et al. Research progress of functional composite electrode materials based on nanocellulose[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4318-4326. doi: 10.13801/j.cnki.fhclxb.20230228.001

纳米纤维素基功能性复合电极材料的研究进展

doi: 10.13801/j.cnki.fhclxb.20230228.001
基金项目: 国家自然科学基金(32171707);北京市自然科学基金(6202024)
详细信息
    通讯作者:

    张双保,博士,教授,博士生导师,研究方向为木质复合材料与胶黏剂 E-mail: shuangbaozhang@163.com

  • 中图分类号: TK6;TB332

Research progress of functional composite electrode materials based on nanocellulose

Funds: National Natural Science Foundation of China (32171707); Beijing Natural Science Foundation of China (6202024)
  • 摘要: 日益增长的能源需求与不断加剧的环境危机使高性能储能装置成为近些年来的研究热点。根据功率和能量密度,储能设备可分为电化学电容器、二次电池和燃料电池等,其中电极材料在制备绿色环保和高性能储能器中起着重要作用。纳米纤维素来源丰富、环境友好、制备方法多样、高比表面积、优异的力学性能和良好的生物相容性等优点使得其在储能材料的制备及其性能提高方面具有巨大的应用潜力和发展前景。本文针对纳米纤维素的分类、制备方法、改性及纳米纤维素基复合材料进行了总结,重点介绍了纳米纤维素与电活性物质混合及基于纳米纤维素制备的水凝胶、气凝胶、纸/膜复合材料和作为碳前驱体在电极材料的应用和研究进展。

     

  • 图  1  纳米纤维素制备过程[1]: (a)纳米纤维素纤维(CNF)和纳米纤维素晶(CNC)制备;(b)细菌纤维素(BC)制备

    Figure  1.  Nanocellulose preparation process[1]: (a) Preparation of cellulose nanofiber (CNF) and cellulose nanocrystals (CNC); (b) Preparation of bacterial nanocellulose (BC)

    图  2  用作储能电极的3种不同材料[12]

    PPy—Polypyrrole; PEDOT—Poly(3, 4-ethylenedioxythiophene); PTh—Polythiophene; PPP—Poly(p-phenylene); CNT—Carbon nanotubes; GO—Graphene oxide

    Figure  2.  Schematic diagram of three different types of materials used as supercapacitor electrodes[12]

    图  3  纳米纤维素在储能系统的应用

    CNC—Cellulose nanocrystals; CNF—Cellulose nanofiber; BC—Bacterial nanocellulose; QAFCGO—Quaternary ammonium-functionalized nanocellulose/graphene oxide; SCs—Supercapacitors

    Figure  3.  Application of nanocellulose in energy storage system

    图  4  脱木素木材沉积聚吡咯(PPy) (DWP)、2, 2, 6, 6-四甲基哌啶氧化法(TEMPO)氧化DWP周期分别为1~3 h (TDWP-1、TDWP-2、TDWP-3)电极的电化学性能[23]:(a) 10 mV/s扫描速率下的CV曲线;(b)扫描速率为30 mA/cm−2时的电容保持率

    Figure  4.  Electrochemical performance of delignified wood deposits polypyrrole (PPy) (DWP), the period of 2, 2, 6, 6-tetramethylpiperidine oxidation (TEMPO) oxidizing DWP is 1-3 h (TDWP-1, TDWP-2, TDWP-3) electrodes[23]: (a) CV curves at 10 mV/s scan rate; (b) Capacitance retention rate at scan rate of 30 mA/cm−2

    图  5  高导电性碳纳米管纸[25]:(a)在商业纸上直接印刷碳纳米管;(b)不同半径弯曲导电纸后的薄层电阻变化

    R/R0—Ratio of resistance after bending to resistance before bending

    Figure  5.  Highly conductive carbon nanotube paper[25]: (a) Direct printing of carbon nanotubes on commercial paper; (b) Sheet resistance changes after bending the conductive paper at different radii

    图  6  纳米纤维素晶(CNC)/GeO2气凝胶制备过程[29]

    DMF—N, N-dimethylformamide

    Figure  6.  Aerogel preparation process of cellulose nanocrystals (CNC)/GeO2[29]

    图  7  纳米纤维素在薄膜应用[31]:(a)独立电极制造工艺示意图;((b), (c))碳纳米管(CNT)-CNC800的截面形貌

    EC—Ethylene carbonate; DEC—Diethyl carbonate

    Figure  7.  Nanocellulose in thin film applications[31]: (a) Schematic illustration of the free-standing electrode fabrication process; ((b), (c)) Cross-section morphologies of carbon nanotube (CNT)-CNC800

  • [1] NARGATTI K I, SUBHEDAR A R, AHANKARI S S, et al. Nanocellulose-based aerogel electrodes for supercapacitors: A review[J]. Carbohydrate Polymers,2022,297:120039. doi: 10.1016/j.carbpol.2022.120039
    [2] CAO L H, LI H L, XU Z X, et al. Comparison of the heteroatoms-doped biomass-derived carbon prepared by one-step nitrogen-containing activator for high performance supercapacitor[J]. Diamond and Related Materials,2021,114:108316. doi: 10.1016/j.diamond.2021.108316
    [3] KIM J H, SHIM B S, KIM H S, et al. Review of nanocellulose for sustainable future materials[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2015,2(2):197-213. doi: 10.1007/s40684-015-0024-9
    [4] NOREMYLIA M B, HASSAN M Z, ISMAIL Z. Recent advancement in isolation, processing, characterization and applications of emerging nanocellulose: A review[J]. International Journal of Biological Macromolecules,2022,206:954-976. doi: 10.1016/j.ijbiomac.2022.03.064
    [5] YANG Y, CHEN Z, ZHANG J, et al. Preparation and applications of the cellulose nanocrystal[J]. International Journal of Polymer Science,2019,2019:1767028.
    [6] 贺晓凌, 张先楠, 孟红艳, 等. 响应面法优化产细菌纤维素菌发酵条件[J]. 天津工业大学学报, 2020, 39(3):54-60. doi: 10.3969/j.issn.1671-024x.2020.03.009

    HE Xiaoling, ZHANG Xiannan, MENG Hongyan, et al. The response surface method optimizes the fermentation conditions of bacteria-producing cellulose bacteria[J]. Jour-nal of Tianjin Polytechnic University,2020,39(3):54-60(in Chinese). doi: 10.3969/j.issn.1671-024x.2020.03.009
    [7] WANG J, LIU X, JIN T, et al. Preparation of nanocellulose and its potential in reinforced composites: A review[J]. Journal of Biomaterials Science-Polymer Edition,2019,30(11):919-946. doi: 10.1080/09205063.2019.1612726
    [8] HERRICK F W, CASEBIER R L, HAMILTON J K, et al. Microfibrillated cellulose: Morphology and accessibility[J]. Journal of Applied Polymer Science,1983, 37: 797-813.
    [9] WANG Q, ZHAO X, ZHU J Y. Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs)[J]. Industrial & Engineering Chemistry Research,2014,53(27):11007-11014.
    [10] LIU Y, GUO B, XIA Q, et al. Efficient cleavage of strong hydrogen bonds in cotton by deep eutectic solvents and facile fabrication of cellulose nanocrystals in high yields[J]. ACS Sustainable Chemistry & Engineering,2017,5(9):7623-7631.
    [11] 杨严仲, 高旭, 席蓓, 等. 纳米纤维素在复合材料领域的研究进展[J]. 山东化工, 2022, 51(16):118-120. doi: 10.3969/j.issn.1008-021X.2022.16.033

    YANG Yanzhong, GAO Xu, XI Bei, et al. Research progress of nanocellulose in the field of composite materials[J]. Shandong Chemical Industry,2022,51(16):118-120(in Chinese). doi: 10.3969/j.issn.1008-021X.2022.16.033
    [12] KULANDAIVALU S, SULAIMAN Y. Recent advances in layer-by-layer assembled conducting polymer based composites for supercapacitors[J]. Energies,2019,12(11):2107. doi: 10.3390/en12112107
    [13] MO M M, CHEN C C, GAO H, et al. Wet-spinning assembly of cellulose nanofibers reinforced graphene/polypyrrole microfibers for high performance fiber-shaped supercapacitors[J]. Electrochimica Acta,2018,269:11-20. doi: 10.1016/j.electacta.2018.02.118
    [14] EL-SAID W A, ABDELSHAKOUR M, CHOI J H, et al. Application of conducting polymer nanostructures to electrochemical biosensors[J]. Molecules,2020,25(2):307. doi: 10.3390/molecules25020307
    [15] WANG Z H, TAMMELA P, ZHANG P, et al. Freestanding nanocellulose-composite fibre reinforced 3D polypyrrole electrodes for energy storage applications[J]. Nanoscale,2014,6(21):13068-13075. doi: 10.1039/C4NR04642K
    [16] MA Y P, XIE X B, YANG W Y, et al. Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors[J]. Advanced Composites and Hybrid Materials,2021,4(4):906-924. doi: 10.1007/s42114-021-00358-2
    [17] WU M S, XU W H. Nickel nanoparticles embedded in partially graphitic porous carbon fabricated by direct carbonization of nickel-organic framework for high-performance supercapacitors[J]. Journal of Power Sources,2015,274:1055-1062. doi: 10.1016/j.jpowsour.2014.10.133
    [18] WEI Q L, XIONG F Y, TAN S S, et al. Porous one-dimensional nanomaterials: Design, fabrication and applications in electrochemical energy storage[J]. Advanced Materials,2017,29(20):1602300. doi: 10.1002/adma.201602300
    [19] CHEN Y, LU K, SONG Y, et al. A skin-inspired stretchable, self-healing and electro-conductive hydrogel with asynergistic triple network for wearable strain sensors applied in human-motion detection[J]. Nanomaterials (Basel),2019,9(12):1737. doi: 10.3390/nano9121737
    [20] HSU H H, LIU Y Q, WANG Y, et al. Mussel-inspired autonomously self-healable all-in-one supercapacitor with biocompatible hydrogel[J]. ACS Sustainable Chemistry & Engineering,2020,8(18):6935-6948.
    [21] HAN J Q, DING Q Q, MEI C T, et al. An intrinsically self-healing and biocompatible electroconductive hydrogel based on nanostructured nanocellulose-polyaniline complexes embedded in a viscoelastic polymer network towards flexible conductors and electrodes[J]. Electrochimica Acta,2019,318:660-672. doi: 10.1016/j.electacta.2019.06.132
    [22] LI Z Y, LI X, JIANG Y F, et al. Nanocellulose composite gel with high ionic conductivity and long service life for flexible zinc-air battery[J]. Polymer Testing,2021,104:107380. doi: 10.1016/j.polymertesting.2021.107380
    [23] HE W, QIANG H, LIANG S, et al. Hierarchically porous wood aerogel/polypyrrole (PPy) composite thick electrode for supercapacitor[J]. Chemical Engineering Journal,2022,446(5):137331.
    [24] 葛溢. 基于纤维素/石墨烯复合气凝胶的水系锌离子电池正极材料制备与性能[D]. 南昌: 东华理工大学, 2018: 73.

    GE Yi. Preparation and properties of zinc ion battery cathode materials based on cellulose/graphene composite aerogel[D]. Nanchang: East China University of Technology, 2018: 73(in Chinese).
    [25] HU L, CHOI J W, YANG Y, et al. Highly conductive paper for energy-storage devices[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(51):21490-21494. doi: 10.1073/pnas.0908858106
    [26] JABBOUR L, DESTRO M, CHAUSSY D, et al. Flexible cellulose/LiFePO4 paper-cathodes: Toward eco-friendly all-paper Li-ion batteries[J]. Cellulose,2013,20(1):571-582. doi: 10.1007/s10570-012-9834-x
    [27] FANG Z, HOU G, CHEN C, et al. Nanocellulose-based films and their emerging applications[J]. Current Opinion in Solid State and Materials Science,2019,23(4):100764. doi: 10.1016/j.cossms.2019.07.003
    [28] WANG Z, PAN R, RUAN C, et al. Redox-active separators for lithium-ion batteries[J]. Advanced Science (Weinh),2018,5(3):1700663. doi: 10.1002/advs.201700663
    [29] WALTERS C M, MATHARU G K, HAMAD W Y, et al. Chiral nematic cellulose nanocrystal/germania and carbon/germania composite aerogels as supercapacitor materials[J]. Chemistry of Materials,2021,33(13):5197-5209. doi: 10.1021/acs.chemmater.1c01272
    [30] LIU Y, CHEN J, LIU Z, et al. Facile fabrication of Fe3O4 nanoparticle/carbon nanofiber aerogel from Fe-ion cross-linked cellulose nanofibrils as anode for lithium-ion battery with superhigh capacity[J]. Journal of Alloys and Compounds,2020,829:154541. doi: 10.1016/j.jallcom.2020.154541
    [31] NGUYEN H K, BAE J, HUR J, et al. Tailoring of aqueous-based carbon nanotube-nanocellulose films as self-standing flexible anodes for lithium-ion storage[J]. Nanomaterials,2019,9(4):655. doi: 10.3390/nano9040655
    [32] HUANG Y, ZHU C L, YANG J Z, et al. Recent advances in bacterial cellulose[J]. Cellulose,2014,21(1):1-30. doi: 10.1007/s10570-013-0088-z
    [33] YU W D, LIN W R, SHAO X F, et al. High performance supercapacitor basedon Ni3S2/carbon nanofibers and carbon nanofibers electrodes derived from bacterial cellulose[J]. Journal of Power Sources,2014,272:137-143. doi: 10.1016/j.jpowsour.2014.08.064
  • 加载中
图(7)
计量
  • 文章访问数:  798
  • HTML全文浏览量:  421
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-09
  • 修回日期:  2023-02-10
  • 录用日期:  2023-02-16
  • 网络出版日期:  2023-03-01
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回