留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bi2MoS2O4改性g-C3N4光催化降解罗丹明B

王晓爽 李育珍 易思远 高利珍

王晓爽, 李育珍, 易思远, 等. Bi2MoS2O4改性g-C3N4光催化降解罗丹明B[J]. 复合材料学报, 2022, 39(8): 3845-3851. doi: 10.13801/j.cnki.fhclxb.20210917.002
引用本文: 王晓爽, 李育珍, 易思远, 等. Bi2MoS2O4改性g-C3N4光催化降解罗丹明B[J]. 复合材料学报, 2022, 39(8): 3845-3851. doi: 10.13801/j.cnki.fhclxb.20210917.002
WANG Xiaoshuang, LI Yuzhen, YI Siyuan, et al. Bi2MoS2O4 modified g-C3N4 photocatalytic degradation of Rhodamine B[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3845-3851. doi: 10.13801/j.cnki.fhclxb.20210917.002
Citation: WANG Xiaoshuang, LI Yuzhen, YI Siyuan, et al. Bi2MoS2O4 modified g-C3N4 photocatalytic degradation of Rhodamine B[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3845-3851. doi: 10.13801/j.cnki.fhclxb.20210917.002

Bi2MoS2O4改性g-C3N4光催化降解罗丹明B

doi: 10.13801/j.cnki.fhclxb.20210917.002
基金项目: 山西省自然科学基金(201901D111068;201901D211029);山西省重点研发计划(一般)社会发展项目(201803D31152)
详细信息
    通讯作者:

    李育珍,博士,副教授,硕士生导师,研究方向为水污染控制  Email:liyuzhen@tyut.edu.cn

  • 中图分类号: X703

Bi2MoS2O4 modified g-C3N4 photocatalytic degradation of Rhodamine B

  • 摘要: 为了降低石墨相氮化碳(g-C3N4)电子空穴的复合率,采用浸渍法成功制备了Bi2MoS2O4/g-C3N4异质结,并对其光催化性能进行了研究。紫外-可见漫反射光谱测得改性后的催化剂的吸收边由原来的470 nm红移至490 nm。探讨了负载比、催化剂投加量和pH对罗丹明B可见光降解率的影响。当Bi2MoS2O4占g-C3N4质量分数为18wt%、催化剂投加量为0.36 g/L时,该催化剂可在15 min内完全降解罗丹明B。自由基捕获实验和能带分析结果表明,该体系形成了一种II型电子转移机制,其主要活性物种为•O2

     

  • 图  1  不同负载比的Bi2MoS2O4/g-C3N4光催化剂对罗丹明B(RhB)的降解曲线 (a) 和30 min处的反应速率常数 (b)

    Figure  1.  Degradation curves (a) and rate constant at 30 min (b) of Rhodamine B (RhB) with different loading ratios of Bi2MoS2O4/g-C3N4

    C0—Initial concentration of RhB (mg/L); C—Concentration of RhB after time t (mg/L)

    图  2  g-C3N4、Bi2MoS2O4和18wt%Bi2MoS2O4/g-C3N4的XRD图谱

    Figure  2.  XRD patterns of g-C3N4, Bi2MoS2O4 and 18wt%Bi2MoS2O4/g-C3N4

    图  3  g-C3N4 (a) 和18wt%Bi2MoS2O4/g-C3N4 (b) 的SEM图像

    Figure  3.  SEM images of g-C3N4 (a) and 18wt%Bi2MoS2O4/g-C3N4 (b)

    图  4  g-C3N4、Bi2MoS2O4和18wt%Bi2MoS2O4/g-C3N4的紫外-可见漫反射图谱(a)及带隙图(b)

    Figure  4.  UV-Vis diffuse reflectance spectrum (a) and band gap diagram (b) of g-C3N4, Bi2MoS2O4 and 18wt%Bi2MoS2O4/g-C3N4

    α—Absorption coefficient; v—Light frequency; h—Planck constant

    图  5  不同投加量的18wt%Bi2MoS2O4/g-C3N4对RhB的降解曲线 (a)和30 min处的反应速率常数 (b)

    Figure  5.  Degradation curves (a) and rate constant of RhB at 30 min (b) with different dosage of 18wt%Bi2MoS2O4/g-C3N4

    图  6  不同pH的18wt%Bi2MoS2O4/g-C3N4对RhB的降解曲线

    Figure  6.  Degradation curves of RhB with different pH on 18wt%Bi2MoS2O4/g-C3N4

    图  7  不同捕获剂对RhB的降解曲线 (a) 和15 min处的反应速率常数 (b)

    Figure  7.  Degradation curves (a) and rate constant at 15 min (b) of RhB with different capture agents

    BQ—p-Benzoquinone; AO—Ammonium oxalate; TBA—Tert butyl alcohol

    图  8  Bi2MoS2O4/g-C3N4降解RhB的光催化机制

    Figure  8.  Proposed photocatalytic mechanism for photocatalytic degradation of RhB on Bi2MoS2O4/g-C3N4

    表  1  不同Bi2MoS2O4/g-C3N4异质结的命名

    Table  1.   Name of different Bi2MoS2O4/g-C3N4 heterojunctions

    Sample codeDetails
    Bi2MoS2O4/g-C3N4Composite material formed by loading Bi2MoS2O4 on g-C3N4
    3wt%Bi2MoS2O4/g-C3N4Mass fraction of Bi2MoS2O4 in g-C3N4 is 3wt%
    8wt%Bi2MoS2O4/g-C3N4Mass fraction of Bi2MoS2O4 in g-C3N4 is 8wt%
    10wt%Bi2MoS2O4/g-C3N4Mass fraction of Bi2MoS2O4 in g-C3N4 is 10wt%
    15wt%Bi2MoS2O4/g-C3N4Mass fraction of Bi2MoS2O4 in g-C3N4 is 15wt%
    18wt%Bi2MoS2O4/g-C3N4Mass fraction of Bi2MoS2O4 in g-C3N4 is 18wt%
    20wt%Bi2MoS2O4/g-C3N4Mass fraction of Bi2MoS2O4 in g-C3N4 is 20wt%
    下载: 导出CSV
  • [1] HASANPOUR M, HATAMI M. Photocatalytic performance of aerogels for organic dyes removal from wastewaters: Review study[J]. Journal of Molecular Liquids,2020,309:113094-113114. doi: 10.1016/j.molliq.2020.113094
    [2] JAWAD A H, MAMAT N F H, HAMEED B H, et al. Biofilm of cross-linked chitosan-ethylene glycol diglycidyl ether for removal of reactive red 120 and methyl orange: Adsorption and mechanism studies[J]. Journal of Environmental Chemical Engineering,2019,7(2):102965-102976. doi: 10.1016/j.jece.2019.102965
    [3] CHOWDHURY M F, KHANDAKER S, SARKER F, et al. Current treatment technologies and mechanisms for removal of indigo carmine dyes from wastewater: A review[J]. Jour-nal of Molecular Liquids, 2020, 318: 114061-114080.
    [4] 陈嘉川, 戢德贤, 林兆云, 等. 微晶纤维素基复合材料的制备及其对亚甲基蓝的催化降解性能[J]. 复合材料学报, 2020, 37(12):3184-3193.

    CHEN Jiachuan, JI Dexian, LIN Zhaoyun, et al. Preparation of modified microcrystalline cellulose based composite and its catalytic degradation performance on methylene blue[J]. Acta Materiae Compositae Sinica,2020,37(12):3184-3193(in Chinese).
    [5] 王儒杰, 余锡孟, 王芳芳, 等. 竹炭基铈掺杂氧化锌制备及催化降解亚甲基蓝[J]. 复合材料学报, 2021, 38(6):1890-1894.

    WANG Rujie, YU Ximeng, WANG Fangfang, et al. Preparation of carbon supported cerium doped zinc oxide compo-site material and its photocatalytic properties study in degradation of methylene blue dye[J]. Acta Materiae Compositae Sinica,2021,38(6):1890-1894(in Chinese).
    [6] ZHAO X, YOU Y, HUANG S, et al. Z-scheme photocatalytic production of hydrogen peroxide over Bi4O5Br2/g-C3N4 heterostructure under visible light[J]. Applied Catalysis B-Environmental,2020,278:119251-119261. doi: 10.1016/j.apcatb.2020.119251
    [7] LI Y F, YOU Y, ZHOU M H, et al. Recent advances in g-C3N4-based heterojunction photocatalysts[J]. Journal of Mater-ials Science & Technology, 2020, 56: 1-17.
    [8] SHI R, XU T, YAN L, et al. Enhancement of visible light photocatalytic performances of Bi2MoS2O4 nanoplates[J]. Catalysis Science& Technology,2013,3(7):1757-1764.
    [9] HU S W, YANG L W, TIAN Y, et al. Simultaneous nanostructure and heterojunction engineering of graphitic carbon nitride via in situ Ag doping for enhanced photoelectrochemical activity[J]. Applied Catalysis B-Environmental,2015,163:611-622. doi: 10.1016/j.apcatb.2014.08.023
    [10] SUDHAIK A, RAIZADA P, SINGH P, et al. Highly effective degradation of imidacloprid by H2O2/fullerene decorated P-doped g-C3N4 photocatalyst[J]. Journal of Environmental Chemical Engineering,2020,8(6):104483-104494. doi: 10.1016/j.jece.2020.104483
    [11] WANG R, KONG X Y, ZHANG W T, et al. Mechanism insight into rapid photocatalytic disinfection of salmonella based on vanadate QDs-interspersed g-C3N4 heterostructures[J]. Applied Catalysis B—Environmental, 2018, 225: 228-237.
    [12] YANG Y, BIAN Z. Oxygen doping through oxidation causes the main active substance in g-C3N4 photocatalysis to change from holes to singlet oxygen[J]. Science of the Total Environment, 2020, 753: 141908-141919.
    [13] ZHAO L, YANG D, MA L L, et al. An efficient heteroge-neous catalyst of FeCo2O4/g-C3N4 composite for catalytic peroxymonosulfate oxidation of organic pollutants under visible light[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610: 125725-125733.
    [14] ZHANG Y. The influence of operating parameters on heterogeneous photocatalytic mineralization of phenol over BiPO4[J]. Chemical Engineering Journal,2014,245:117-123. doi: 10.1016/j.cej.2014.02.028
    [15] ZHAO C R, CHENG Y J, LI C H, et al. One step and fast preparation of VOx/g-C3N4 photocatalyst via microwave heating for effective degradation of RhB under visible light[J]. Journal of Physics and Chemistry of Solids, 2020, 136: 109122-109131.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  925
  • HTML全文浏览量:  371
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-02
  • 修回日期:  2021-09-01
  • 录用日期:  2021-09-04
  • 网络出版日期:  2021-09-17
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回