留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al2O3-Sn57Bi43/环氧树脂复合材料的导热及电性能

杨李懿 葛凡 汪蔚 冉涛 李艳飞

杨李懿, 葛凡, 汪蔚, 等. Al2O3-Sn57Bi43/环氧树脂复合材料的导热及电性能[J]. 复合材料学报, 2023, 41(0): 1-9
引用本文: 杨李懿, 葛凡, 汪蔚, 等. Al2O3-Sn57Bi43/环氧树脂复合材料的导热及电性能[J]. 复合材料学报, 2023, 41(0): 1-9
Liyi YANG, Fan GE, Wei WANG, Tao RAN, Yanfei Li. Thermal conductivity and electrical properties of Al2O3-Sn57Bi43/epoxy composites[J]. Acta Materiae Compositae Sinica.
Citation: Liyi YANG, Fan GE, Wei WANG, Tao RAN, Yanfei Li. Thermal conductivity and electrical properties of Al2O3-Sn57Bi43/epoxy composites[J]. Acta Materiae Compositae Sinica.

Al2O3-Sn57Bi43/环氧树脂复合材料的导热及电性能

基金项目: 浙江省基础公益研究计划项目(LGG19E030006)
详细信息
    通讯作者:

    汪蔚,博士,教授,研究方向为聚合物基复合材料 E-mail: zjxuwangwei@163.com

  • 中图分类号: TB332

Thermal conductivity and electrical properties of Al2O3-Sn57Bi43/epoxy composites

Funds: Zhejiang Province Public Welfare Technology Application Research Project(LGG19E030006)
  • 摘要: 随着现代电气电子设备趋于向大功率、小体积、轻量化,以及高密高频、集成化、微型化方向发展,热管理问题已经成为制约设备性能和可靠性提高的主要技术瓶颈之一,需研制高导热绝缘封装材料解决结构散热问题。常规填充型导热绝缘材料,填料之间接触热阻大,不易相互连接形成有效的导热通路,导热性能提高十分有限。本文采用共还原法,在氧化铝(Al2O3)表面沉积低熔点纳米锡铋合金颗粒(Sn57Bi43),制备杂化材料(Al2O3-Sn57Bi43),用于环氧树脂的导热绝缘填料。当环氧树脂受热固化时,杂化材料表面Sn57Bi43熔融,将填料相互连接而形成导热通路,提高复合体系导热性能。当填料体积含量为60%时,Al2O3-Sn57Bi43/环氧树脂复合材料的导热系数为2.95 W·(m·K)-1,比Al2O3/环氧树脂复合材料的导热系数(1.82 W·(m·K)-1)提高了62.1%。Fogyel及Agari模型分析表明,Al2O3表面沉积Sn57Bi43有利于降低填料间接触热阻,形成导热通路。与Al2O3/环氧树脂复合材料相比,Al2O3-Sn57Bi43/环氧树脂复合材料的介质损耗增加,介电强度及体积电阻率降低,但仍具有电绝缘性能。由于填料-基体间界面性能改善,以及Al2O3-Sn57Bi43形成的网链结构能起到传递应力,阻止裂纹扩张的作用,Al2O3-Sn57Bi43/环氧树脂复合材料的拉伸断裂强度提高。Al2O3-Sn57Bi43杂化材料及Al2O3-Sn57Bi43/环氧树脂复合材料的制备过程示意图

     

  • 图  1  Al2O3-Sn57Bi43杂化材料及Al2O3-Sn57Bi43/环氧树脂复合材料的制备过程示意图

    Figure  1.  Schematic illustration of preparation for Al2O3-Sn57Bi43 hybrid fillers and Al2O3-Sn57Bi43/epoxy composites

    图  2  Al2O3和Al2O3-Sn57Bi43杂化材料的XPS全谱(a)和Sn 3d(b)、Bi 4f(c)高分辨率窄谱

    Figure  2.  Survey XPS(a) and high resolution spectra of Sn 3 d(b), Bi 4 f(c) region of Al2O3 and Al2O3-Sn57Bi43 hybrid fillers

    图  3  Al2O3和Al2O3-Sn57Bi43的DSC曲线

    Figure  3.  DSC curves of Al2O3 andAl2O3-Sn57Bi43

    图  4  Al2O3(a)、Al2O3-Sn57Bi43杂化材料(b)以及经150℃/2 h处理后的Al2O3-Sn57Bi43杂化材料(c)的SEM图

    Figure  4.  SEM images of Al2O3 (a), Al2O3-Sn57Bi43 hybrid fillers (b) and Al2O3-Sn57Bi43 after thermal treatment at 150℃ for 2 h (c)

    图  5  Al2O3/环氧树脂(a)及Al2O3-Sn57Bi43/环氧树脂(b)复合材料横截面的SEM图像

    Figure  5.  Cross section SEM images of Al2O3/epoxy (a) and Al2O3-Sn57Bi43/epoxy composites (b)

    图  6  填料体积含量对Al2O3/环氧树脂和Al2O3-Sn57Bi43/环氧树脂复合材料导热系数的影响

    Figure  6.  Effects of filler volume fraction on thermal conductivity of Al2O3/epoxy and Al2O3-Sn57Bi43/epoxy composites

    图  7  Al2O3/环氧树脂和Al2O3-Sn57Bi43/环氧树脂复合材料的log(λ-λ1)-log[(Vf-Vc)/(1-Vc)]曲线

    Figure  7.  log(λ-λ1)-log[(Vf-Vc)/(1-Vc)] curves of Al2O3/epoxy and Al2O3-Sn57Bi43/epoxy composites

    图  8  Al2O3/环氧树脂和Al2O3-Sn57Bi43/环氧树脂复合材料的logλ-Vf曲线

    Figure  8.  logλ-Vf curves of Al2O3/epoxy and Al2O3-Sn57Bi43/epoxy composites

    表  1  Al2O3和Al2O3-Sn57Bi43的元素组成

    Table  1.   Element compositions of Al2O3 and Al2O3-Sn57Bi43 wt%

    SampleAlOSnBi
    Al2O350.7247.360 0
    Al2O3-Sn57Bi4340.2537.988.5111.38
    下载: 导出CSV

    表  2  Al2O3/环氧树脂和Al2O3-Sn57Bi43/环氧树脂复合材料的密度、比热容及热扩散系数

    Table  2.   Density, specific heat capacity and thermal diffusion coefficient of Al2O3/epoxy and Al2O3-Sn57Bi43/epoxy composites

    Vf /%Al2O3/epoxyAl2O3-Sn57Bi43/epoxy
    Density/
    (kg·m−3)
    Specific heat
    capacity/[J·(kg·K)−1]
    Thermal diffusion
    coefficients/(m2·s−1)
    Density/
    (kg·m−3)
    Specific heat
    capacity/[J·(kg·K)−1]
    Thermal diffusion
    coefficients/(m2·s−1)
    0 1.19×103 1106.43 1.52×10−7 1.19×103 1106.43 1.52×10−7
    6 1.35×103 1045.03 1.42×10−7 1.38×103 1016.70 1.50×10−7
    11 1.49×103 1004.05 1.41×10−7 1.54×103 958.87 1.49×10−7
    14 1.57×103 982.84 1.43×10−7 1.63×103 929.55 1.51×10−7
    17 1.65×103 963.71 1.76×10−7 1.73×103 903.46 2.05×10−7
    22 1.78×103 935.68 2.46×10−7 1.89×103 865.83 3.12×10−7
    29 1.97×103 902.86 3.04×10−7 2.11×103 822.64 4.09×10−7
    38 2.21×103 868.87 4.94×10−7 2.39×103 778.87 7.77×10−7
    48 2.48×103 838.89 5.81×10−7 2.71×103 741.04 10.05×10−7
    55 2.67×103 821.50 7.48×10−7 2.93×103 719.42 12.90×10−7
    60 2.80×103 810.51 8.03×10−7 3.09×103 705.88 13.51×10−7
    下载: 导出CSV

    表  3  Al2O3/环氧树脂和Al2O3-Sn57Bi43/环氧树脂复合材料导热系数的非线性Foygel模拟结果

    Table  3.   The simulation results of nonlinear Foygel model for the thermal conductivity of Al2O3/epoxy and Al2O3-Sn57Bi43/epoxy composites

    SampleVc /%λ0 /W·(m·K)−1βRc /K·W−1
    Al2O319.233.421.0881.17×105
    Al2O3-Sn57Bi4318.256.731.2538.35×104
    Notes: Vc is the critical volume fraction of filler, λ0 is the pre-exponential factor, β is the conductivity exponent that depends on the aspect of filler, Rc is interface thermal resistance.
    下载: 导出CSV

    表  4  Al2O3/环氧树脂和Al2O3-Sn57Bi43/环氧树脂复合材料导热系数的Agari模拟结果

    Table  4.   Agari simulation results for the thermal conductivity of Al2O3/epoxy and Al2O3-Sn57Bi43/epoxy composites

    SampleC1C2
    Al2O30.76610.8991
    Al2O3-Sn57Bi430.74951.1465
    Notes: C1 is a factor affecting crystallinity and crystal size of polymer, C2 is a factor of ease in forming conductive chains of fillers.
    下载: 导出CSV

    表  5  填料体积含量对Al2O3/环氧树脂和Al2O3-Sn57Bi43/环氧树脂复合材料拉伸断裂强度的影响

    Table  5.   Effects of filler volume fraction on tensile properties of Al2O3/epoxy and Al2O3-Sn57Bi43/epoxy composites

    Vf /%Al2O3/epoxyAl2O3-Sn57Bi43/epoxy
    Tensile strength/MPaElongation at break/%Tensile strength/MPaElongation at break/%
    044.56±1.834.47±0.1744.56±1.834.47±0.17
    2040.31±1.204.06±0.1446.84±2.044.75±0.21
    4037.41±1.153.54±0.1549.65±2.165.09±0.19
    6032.28±1.093.21±0.1151.62±2.625.36±0.24
    下载: 导出CSV

    表  6  填料体积含量对Al2O3/环氧树脂和Al2O3-Sn57Bi43/环氧树脂复合材料电性能的影响

    Table  6.   Effects of filler volume fraction on electric properties of Al2O3/epoxy and Al2O3-Sn57Bi43/epoxy composites

    Vf /%Al2O3/epoxyAl2O3-Sn57Bi43/epoxy
    Volume resistivity/
    (×1013 Ω•m)
    Dielectric strength/
    (MV•m−1)
    Dielectric loss/
    ×10−3 tanδ
    Volume resistivity/
    (×1013 Ω•m)
    Dielectric strength/
    (MV•m−1)
    Dielectric loss/
    ×10−3 tanδ
    02.67±0.6825.8±1.64.75±0.082.670±0.68025.8±1.64.75±0.08
    202.79±0.5125.2±2.13.98±0.060.921±0.10622.1±1.411.02±0.22
    402.81±0.6224.5±1.95.22±0.070.264±0.09619.6±1.215.46±0.97
    602.87±0.7524.3±1.34.75±0.070.086±0.03418.5±1.319.43±1.46
    下载: 导出CSV
  • [1] LI Q, CHEN L, GADINSKI M R, et al. Flexible high-temperature dielectric materials from polymer nanocomposites[J]. Nature,2015,523(7562):576-579. doi: 10.1038/nature14647
    [2] HARUKI M, TANAKA K. Controlling thermal conductivities and electrical insulation properties of carbon nanofiber/polyimide composites using surface coating techniques[J]. Polymer Composites,2020,41(8):2990-2997. doi: 10.1002/pc.25591
    [3] LIU J C, GUO Y F, WENG C X, et al. High thermal conductive epoxy based composites fabricated by multi-material direct ink writing[J]. Composites Part A:Applied Science and Manufacturing,2020,129:105684. doi: 10.1016/j.compositesa.2019.105684
    [4] CHEN J, HUANG X Y, SUN B, et al. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability[J]. ACS Nano,2019,13(1):337-345. doi: 10.1021/acsnano.8b06290
    [5] CHEN J, HUANG X Y, Zhu Y K, et al. Cellulose nanofiber supported 3 D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability[J]. Advanced Functional Materials,2017,27(5):1604754. doi: 10.1002/adfm.201604754
    [6] CAMILLERI R, HOWEY D A, MCCULLOCH M D. Predicting the temperature and flow distribution in a direct oil-cooled electrical machine with segmented stator[J]. IEEE Transactions on Industrial Electronics,2016,63(1):82-91. doi: 10.1109/TIE.2015.2465902
    [7] OUYANG Y G, DING F, BAI L Y, et all. Design of network Al2O3 spheres for significantly enhanced thermal conductivity of polymer composites[J]. Composites Part A:Applied Science and Manufacturing,2020,128:105673. doi: 10.1016/j.compositesa.2019.105673
    [8] AKHTAR M W, KIM J S, MEMON M A. Surface modification of magnesium oxide/epoxy composites with significantly improved mechanical and thermal properties[J]. Journal of Materials Science:Materials in Electronics,2021,32(11):15307-15316. doi: 10.1007/s10854-021-06080-5
    [9] 吴宇明, 虞锦洪, 曹勇, 等. 高导热低填量聚合物基复合材料研究进展[J]. 复合材料学报, 2018, 35(4):760-766. doi: 10.13801/j.cnki.fhclxb.20170607.001

    WU Yuming, YU Jinhong, CAO Yong, et al. Review of polymer-based composites with high thermal conductivity and low filler loading[J]. Acta Materiae Compositae Sinica,2018,35(4):760-766(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170607.001
    [10] 高利达, 李祥, 张效重, 等. 六方氮化硼-立方氮化硼/环氧树脂复合材料的制备与热物性能[J]. 复合材料学报, 2022, 39(6):2599-2606.

    GAO Lida, LI X, ZHANG Xiaocong, et al. Preparation and thermophysical properties of hexagonal boron nitride-cubic boron nitride/epoxy composites[J]. Acta Materiae Compositae Sinica,2022,39(6):2599-2606(in Chinese).
    [11] HUTCHINSON J M, MORADI S, Thermal conductivity and cure kinetics of epoxy-boron nitride composites-a review[J]. Materials, 2020, 13(16): 3463
    [12] WEI Z L, XIE W Q, GE B Z. Enhanced thermal conductivity of epoxy composites by constructing aluminum nitride honeycomb reinforcements[J]. Composites Science and Technology,2020,199:108304. doi: 10.1016/j.compscitech.2020.108304
    [13] 周文英, 丁小卫. 导热高分子材料[J]. 北京:国防工业出版社, 2014:187-188.

    ZHOU Wenying, DING Xiaowei. Thermal Conductive Polymer Materials[J]. Beijing:National Defense Industry Press,2014:187-188(in Chinese).
    [14] LEE W, WIE J, KIM J. Enhancement of thermal conductivity of alumina/epoxy composite using poly(glycidyl methacrylate) grafting and crosslinking[J]. Ceramics International,2021,47(13):18662-18668. doi: 10.1016/j.ceramint.2021.03.198
    [15] WANG W, YANG L Y, ZHENG M M, et al. Enhanced thermal conductivity of epoxy composites via bridged Al2O3 network with in situ formed silver nanoparticles[J]. Polymer Composites,2022,43:330-338. doi: 10.1002/pc.26377
    [16] PAN Z H, LIU Y H, WANG F, et all. Al2O3 dispersion-induced micropapillae in an epoxy composite coating and implications in thermal conductivity[J]. ACS Omega,2021,6:17870-17879. doi: 10.1021/acsomega.1c01282
    [17] 吴加雪, 唐超, 张天栋, 等. 氮化硼和氧化锌晶须共掺杂环氧树脂复合材料的导热与绝缘性能[J]. 复合材料学报, 2022, 39(5):2183-2191.

    WU Jiaxue, TANG Chao, ZHANG Tiandong, et al. Thermal conductivity and electrical insulating properties of epoxy composites mixed with boron nitride and zinc oxide whisker[J]. Acta Materiae Compositae Sinica,2022,39(5):2183-2191(in Chinese).
    [18] CHEN C, XUE Y, XIE X L, et al. Construction of 3 D boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in-situ sintering of silver nanoparticles[J]. Chemical Engineering Journal,2019,369:1150-1160. doi: 10.1016/j.cej.2019.03.150
    [19] YU H T, GUO P L, QIN M M, et al. Highly thermally conductive polymer composite enhanced by two-level adjustable boron nitride network with leaf venation structure[J]. Composites Science and Technology,2022,222:109406. doi: 10.1016/j.compscitech.2022.109406
    [20] REN L L, LI Q, ZENG X L, et al. Enhanced thermal conductivity for Ag-deposited alumina sphere/epoxy resin composites through manipulating interfacial thermal resistance[J]. Composites Part A-Applied Science and Manufacturing,2018,107:561-569. doi: 10.1016/j.compositesa.2018.02.010
    [21] HAO L-C, LIA Z-X, WANG B, et al. High-performance epoxy composites reinforced with three-dimensional Al2O3 ceramic framework[J]. Composites Part A,2019,127:105648. doi: 10.1016/j.compositesa.2019.105648
    [22] HU Y, DU G P, CHEN N. A novel approach for Al2O3/epoxy composites with high strength and thermal conductivity[J]. Composites Science and Technology,2016,124:36-43. doi: 10.1016/j.compscitech.2016.01.010
    [23] FRONGIA F, PILLONI M, ENNAS G, et al. Synthesis and melting behaviour of Bi, Sn and Sn-Bi nanostructured alloy[J]. Journal of Alloys and Compounds,2015,623:7-14. doi: 10.1016/j.jallcom.2014.08.122
    [24] 中国国家标准化管理委员会. 塑料-拉伸性能的测定: GB/T 1040.1-2018[S]. 北京: 中国标准出版社, 2018.

    Standardization Administration of the People, s Republic of China. Plastics-Determination of tensile properties: Beijing: China Standards Press, 2018(Chinese).
    [25] 中国国家标准化管理委员会. 固体绝缘材料体积电阻率和表面电阻率试验方法: GB/T 1410-2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People, s Republic of China. Methods of test for volume resistivity and surface resistivity of solid electrical insulating materials: GB/T 1410-2006[S]. Beijing: China Standards Press, 2006(Chinese).
    [26] 中国国家标准化管理委员会. 绝缘材料电气强度试验方法 第1部分: 工频下试验: GB/T 1408.1-2016[S]. 北京: 中国标准出版社, 2016.

    Standardization Administration of the People, s Republic of China. Insulating materials: Test methods for electric strength Part 1: Test at power frequencies: GB/T 1408.1-2016[S]. Beijing: China Standards Press, 2016(Chinese).
    [27] 中国国家标准化管理委员会. 测量电气绝缘材料在工频、音频、高频(包括米波波长在内)下电容率和介质损耗因数的推荐方法: GB/T 1409-2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People, s Republic of China. Recommended methods for the determination of the permittivity and dielectric dissipation factor of electrical insulating materials at power, audio and radio frequencies including meter wavelengths: GB/T 1409-2006[S]. Beijing: China Standards Press, 2006(Chinese).
    [28] 王绪彬, 张昌海, 张天栋, 迟庆国. 三维多孔氮化铝/环氧树脂复合材料的导热与电性能[J]. 复合材料学报, 2023:40. doi: 10.13801/j.cnki.fhclxb.20220905.002

    WANG Xubin, ZHANG Changhai, ZHANG Tiandong, et al. Thermal conductivity and electrical properties of three-dimensional porous aluminum nitride/epoxy composites[J]. Acta Materiae Compositae Sinica,2023:40(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220905.002
    [29] Hu J T, Huang Y, Yao Y M, et al. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN[J]. ACS Applied Materials and Interfaces,2017,9:13544-13553. doi: 10.1021/acsami.7b02410
    [30] 汪蔚, 曹万荣, 陈婷婷. BN表面改性对BN/环氧树脂复合材料导热性能的影响[J]. 复合材料学报, 2018, 35(2):275-281. doi: 10.13801/j.cnki.fhclxb.20170509.002

    WANG Wei, CAO Wangrong, CHEN Tingting. Effects of BN surface modification on thermal conductivity of BN/epoxy composites[J]. Acta Materiae Compositae Sinica,2018,35(2):275-281(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170509.002
    [31] AGARI Y, UNO T. Estimation on thermal conductivities of filled polymers[J]. Journal of Applied Polymer Science,1986,32(7):5705-5712. doi: 10.1002/app.1986.070320702
  • 加载中
计量
  • 文章访问数:  112
  • HTML全文浏览量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-22
  • 修回日期:  2022-12-14
  • 录用日期:  2022-12-21
  • 网络出版日期:  2023-01-10

目录

    /

    返回文章
    返回