留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

工业用环氧树脂及其复合材料的闭环回收再制造

安乐 赵文哲 金宸宇

安乐, 赵文哲, 金宸宇. 工业用环氧树脂及其复合材料的闭环回收再制造[J]. 复合材料学报, 2023, 40(5): 2575-2586. doi: 10.13801/j.cnki.fhclxb.20220822.002
引用本文: 安乐, 赵文哲, 金宸宇. 工业用环氧树脂及其复合材料的闭环回收再制造[J]. 复合材料学报, 2023, 40(5): 2575-2586. doi: 10.13801/j.cnki.fhclxb.20220822.002
AN Le, ZHAO Wenzhe, JIN Chenyu. Closed-loop recycling and re-manufacturing of engineering epoxy and its composites[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2575-2586. doi: 10.13801/j.cnki.fhclxb.20220822.002
Citation: AN Le, ZHAO Wenzhe, JIN Chenyu. Closed-loop recycling and re-manufacturing of engineering epoxy and its composites[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2575-2586. doi: 10.13801/j.cnki.fhclxb.20220822.002

工业用环氧树脂及其复合材料的闭环回收再制造

doi: 10.13801/j.cnki.fhclxb.20220822.002
基金项目: 国家重点研发计划 (2019YFA0706800);中国博士后基金面上项目(2019M663676);中央高校基础科研业务费(xjh012019035)
详细信息
    通讯作者:

    安乐,博士,助理教授,研究方向为复合材料连接、回收及其力学 E-mail: anle2018@mail.xjtu.edu.cn

  • 中图分类号: X705;V258

Closed-loop recycling and re-manufacturing of engineering epoxy and its composites

Funds: National Key R&D Program of China (2019YFA0706800); China Postdoctoral Science Foundation (2019M663676); Fundamental Research Funds for the Central Universities (xjh012019035)
  • 摘要: 环氧树脂基碳纤维增强复合材料因其优异的力学、热学性能已广泛应用于航天航空等领域。环氧树脂由三维共价交联网络组成,难以被降解。工业中通常需高温(300~800℃)、高压(3~27 MPa)等严苛环境或有毒催化剂来破坏树脂基体,以回收复合材料废弃物中昂贵的碳纤维,这一过程往往会造成纤维性能的严重损失。本文利用环氧树脂与醇溶剂之间的动态键交换反应,将工业中常用的高性能环氧树脂降解为低聚物,降解条件温和(200℃、0 MPa),且无需额外催化剂。通过树脂降解,回收得到结构完整的碳纤维织物,其强度保持在94%以上,可继续用于制备复合材料。将低聚物作为反应物制备新的环氧树脂,称为再制造环氧树脂。当再制造环氧树脂中低聚物的含量为20wt%时,其强度与原环氧树脂相当,而断裂伸长率提高了20%。用再制造环氧树脂制备碳纤维复合材料,其强度与原环氧基复合材料相当,同时断裂伸长率提高了50%。本文实现了工业用环氧树脂及其复合材料从制造到回收到再制造过程,即闭环回收再制造。同时,本文新提出了一种绿色、简单、有效的环氧树脂增韧方法。

     

  • 图  1  环氧树脂的闭环回收再制造过程

    DGEBA—Diglycidyl ether of bisphenol A; GA—Glutaric anhydride; DMP-30—2, 4, 6-tris(dimethylaminomethyl)phenol; EG—Ethylene glycol

    Figure  1.  Closed-loop recycling and re-manufacturing of the epoxy resin

    图  2  环氧基复合材料的闭环回收再制造过程

    DEO—Decomposed epoxy oligomer; CF—Carbon fiber; CFRP—Carbon fiber reinforced polymer

    Figure  2.  Closed-loop recycling and re-manufacturing of the epoxy composite

    图  3  不同DEO含量的再制造环氧树脂的DSC曲线

    Figure  3.  DSC curves of the re-manufactured epoxy resins with different DEO contents

    图  4  不同DEO含量的再制造环氧树脂的FTIR结果

    δ—Characteristic absorption peak; ν—Stretching vibration peak

    Figure  4.  FTIR results of re-manufactured epoxy resins with different DEO contents

    图  5  不同DEO含量的再制造环氧树脂的DMA测试结果

    Figure  5.  DMA results of re-manufactured epoxy resins with different DEO contents

    图  6  再制造环氧树脂的单轴拉伸应力-应变曲线

    Figure  6.  Uniaxial tensile stress-strain curves of re-manufactured epoxy resins

    图  7  再制造环氧树脂的热失重分析

    Figure  7.  TGA results of re-manufactured epoxy resins

    图  8  回收环氧基复合材料的单轴拉伸应力-应变曲线

    Figure  8.  Uniaxial tensile stress-strain curves of re-manufactured epoxy composites

    图  9  原始碳纤维织物 (a) 与回收碳纤维织物 (b) 的SEM图像

    Figure  9.  SEM images of the original (a) and recycled (b) fiber fabrics

    图  10  原始碳纤维织物(CFs)和回收碳纤维织物(RCFs)的TGA曲线

    Figure  10.  TGA curves of original carbon fiber fabric (CFs) and recycled carbon fiber fabric (RCFs)

    图  11  原始碳纤维织物(CFs)和回收碳纤维织物(RCFs)的单轴拉伸力学性能

    Figure  11.  Uniaxial tensile mechanical properties of original carbon fiber fabrics (CFs) and recycled carbon fiber fabrics (RCFs)

    图  12  CFs/epoxy复合材料和RCFs/epoxy复合材料的单轴拉伸应力-应变曲线

    Figure  12.  Uniaxial tensile stress-strain curves of CFs/epoxy and RCFs/epoxy composites

    表  1  再制造环氧树脂及其复合材料的命名

    Table  1.   Naming of re-manufactured epoxy resins and composites

    Material DEO content/wt%
    Epoxy 0
    REP10 10
    REP20 20
    REP30 30
    REP50 50
    CFs/epoxy 0
    CFs/REP10 10
    CFs/REP20 20
    CFs/REP30 30
    CFs/REP50 50
    Notes: REP—Re-manufactured epoxy resins; CFs—Carbon fiber; DEO—Decomposed epoxy oligomer.
    下载: 导出CSV

    表  2  再制造环氧树脂的单轴拉伸力学性能

    Table  2.   Uniaxial tensile mechanical properties of re-manufactured epoxy resins

    MaterialDEO/wt%Tensile strength/MPaElastic modulus/MPaElongation at break/%
    Epoxy074.7±1.41875.7±31.54.8±0.1
    REP101076.4±3.61935.1±34.05.5±0.2
    REP202074.3±1.21876.8±35.15.7±0.2
    REP303072.7±2.11756.9±48.75.9±0.1
    REP505017.2±1.7429.5±9.2130.4±19.9
    下载: 导出CSV

    表  3  再制造环氧树脂的热失重分析结果

    Table  3.   TGA results of re-manufactured epoxy resins

    MaterialDEO/wt%T5%/°CT10%/°CTmax/°C
    Epoxy0384399427
    REP1010379396426
    REP2020381397427
    REP3030381397427
    REP5050357387426
    Notes: T5%—Temperature at 5wt% mass loss; T10%—Temperature at 10wt% mass loss; Tmax—Temperature corresponding to the maximum mass lose rate.
    下载: 导出CSV

    表  4  回收环氧基复合材料的单轴拉伸力学性能

    Table  4.   Uniaxial tensile mechanical properties of re-manufactured epoxy composites

    MaterialDEO/wt%Tensile strength/MPaElastic modulus/GPaElongation at break/%
    CFs/epoxy0647.9±9.820.5±1.66.5±0.8
    CFs/REP1010737.5±17.821.9±2.47.6±0.6
    CFs/REP2020651.9±9.318.2±3.77.7±2.3
    CFs/REP3030572.6±38.915.0±2.58.2±2.6
    CFs/REP5050402.2±38.911.9±1.411.0±0.8
    下载: 导出CSV
  • [1] MARIA M. Advanced composite materials of the future in aerospace industry[J]. Incas Bulletin,2013,5(3):139-150. doi: 10.13111/2066-8201.2013.5.3.14
    [2] 邢丽英, 包建文, 礼嵩明, 等. 先进树脂基复合材料发展现状和面临的挑战[J]. 复合材料学报, 2016, 33(7):1327-1338. doi: 10.13801/j.cnki.fhclxb.20160323.003

    XING Liying, BAO Jianwen, LI Songming, et al. Development status and facing challenge of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica,2016,33(7):1327-1338(in Chinese). doi: 10.13801/j.cnki.fhclxb.20160323.003
    [3] 顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8):2773-2797.

    GU Yizhuo, LI Min, LI Yanxia, et al. Progress on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronautica et Astronautica Sinica,2015,36(8):2773-2797(in Chinese).
    [4] NAVARRO C A, GIFFIN C R, ZHANG B, et al. A structural chemistry look at composites recycling[J]. Materials Horizons,2020 (10):2479-2486.
    [5] 汪东, 李丽英, 柯红军, 等. 高性能可回收环氧树脂及其复合材料的制备与性能研究[J]. 高分子学报, 2020, 51(3):303-310. doi: 10.11777/j.issn1000-3304.2019.19167

    WANG Dong, LI Liying, KE Hongjun, et al. Preparation and properties of recyclable high-performance epoxy resins and composites[J]. Acta Polymerica Sinica,2020,51(3):303-310(in Chinese). doi: 10.11777/j.issn1000-3304.2019.19167
    [6] LI P, MA S, WANG B, et al. Degradable benzyl cyclic acetal epoxy monomers with low viscosity: Synthesis, structure-property relationships, application in recyclable carbon fiber composite[J]. Composites Science and Technology,2022,219:109243. doi: 10.1016/j.compscitech.2021.109243
    [7] DORIGATO A. Recycling of thermosetting composites for wind blade application[J]. Advanced Industrial and Engi-neering Polymer Research,2021,4(2):116-132. doi: 10.1016/j.aiepr.2021.02.002
    [8] PEGORETTI A. Recycling concepts for short-fiber-reinforced and particle-filled thermoplastic composites: A review[J]. Advanced Industrial and Engineering Polymer Research,2021,4(2):93-104. doi: 10.1016/j.aiepr.2021.03.004
    [9] SHI X, LUO C, LU H, et al. Primary recycling of anhydride-cured engineering epoxy using alcohol solvent[J]. Polymer Engineering and Science,2019,59(s2):E111-E119. doi: 10.1002/pen.24997
    [10] SELVAN R T, RAJA P V, MANGAL P, et al. Recycling technology of epoxy glass fiber and epoxy carbon fiber compo-sites used in aerospace vehicles[J]. Journal of Composite Materials, 2021, 55(23): 3281-3292.
    [11] YANG Y, BOOM R, IRION B, et al. Recycling of composite materials[J]. Chemical Engineering and Processing: Process Intensification,2012,51(1):53-68.
    [12] 胡侨乐, 端玉芳, 刘志, 等. 碳纤维增强聚合物基复合材料回收再利用现状[J]. 复合材料学报, 2022, 39(1):64-76. doi: 10.13801/j.cnki.fhclxb.20210615.003

    HU Qiaole, DUAN Yufang, LIU Zhi, et al. Current status of carbon fiber reinforced polymer composites recycling and re-manufacturing[J]. Acta Materiae Compositae Sinica,2022,39(1):64-76(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210615.003
    [13] NAQVI S R, PRABHAKARAET H M, BRAMER E A, et al. A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy[J]. Resources, Conservation and Recycling,2018,136:118-129. doi: 10.1016/j.resconrec.2018.04.013
    [14] CHENG H, HUANG H, JIE Z, et al. Degradation of carbon fiber-reinforced polymer using supercritical fluids[J]. Fibers & Polymers,2017,18(4):795-805.
    [15] HENRY L, SCHNELLER A, DOERFLER J, et al. Semi-continuous flow recycling method for carbon fibre reinforced thermoset polymers by near- and supercritical solvolysis[J]. Polymer Degradation and Stability,2016,133:264-274.
    [16] XU P, LI J, DING J. Chemical recycling of carbon fibre/epoxy composites in a mixed solution of peroxide hydrogen and N, N-dimethylformamide[J]. Composites Science and Technology,2013,82:54-59. doi: 10.1016/j.compscitech.2013.04.002
    [17] DANG W, KUBOUCHI M, YAMAMOTO S, et al. An approach to chemical recycling of epoxy resin cured with amine using nitric acid[J]. Polymer,2002,43(10):2953-2958. doi: 10.1016/S0032-3861(02)00100-3
    [18] LIU T, MENG Z, GUO X, et al. Mild chemical recycling of aerospace fiber/epoxy composite wastes and utilization of the decomposed resin[J]. Polymer Degradation and Stability,2017,139:20-27. doi: 10.1016/j.polymdegradstab.2017.03.017
    [19] ADLER S E, GÜTTLER B E, BENDLER L, et al. Evaluation of recycled carbon fibre/epoxy composites: Thermal degradation behaviour of pyrolysed and virgin carbon fibres using thermogravimetric analysis[J]. Advanced Industrial and Engineering Polymer Research,2021,4(2):82-92. doi: 10.1016/j.aiepr.2021.03.003
    [20] LUZURAGA A, MARTIN R, MARKAIDE N, et al. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites[J]. Materials Horizons,2016,3(3):241-247. doi: 10.1039/C6MH00029K
    [21] KUMAR S, KRISHNA N S. Recycling of carbon fiber with epoxy composites by chemical recycling for future perspective: A review[J]. Chemical Papers,2020,74(11):3785-3807. doi: 10.1007/s11696-020-01198-y
    [22] YANG Y, XU Y, JI Y, et al. Functional epoxy vitrimers and composites[J]. Progress in Materials Science,2020,120:100710.
    [23] YU K, SHI Q, MARTIN L, et al. Carbon fiber reinforced thermoset composite with near 100% recyclability[J]. Advanced Functional Materials,2016,26(33):6098-6106. doi: 10.1002/adfm.201602056
    [24] KUANG X, SHI Q, ZHOU Y, et al. Dissolution of epoxy thermosets via mild alcoholysis: The mechanism and kinetics study[J]. RSC Advances,2018,8(3):1493-1502. doi: 10.1039/C7RA12787A
    [25] 施前, 齐航, 王铁军. 热固性树脂基复合材料的变革性制造方法研究进展[J]. 中国科学: 技术科学, 2019, 49(10): 1121-1132.

    SHI Qian, QI Hang, WANG Tiejun. Advances in the novel fabrication methods for thermoset composites[J]. Scientia Sinica Technologica, 2019, 49(10): 1121-1132(in Chinese).
    [26] 高亮, 霍红宇, 周典瑞, 等. 基于动态共价化学树脂及复合材料的研究进展[J]. 材料工程, 2020, 48(11):68-75. doi: 10.11868/j.issn.1001-4381.2019.001138

    GAO Liang, HUO Hongyu, ZHOU Dianrui, et al. Research progress in resin based on dynamic covalent chemistry and its composites[J]. Journal of Materials Engineering,2020,48(11):68-75(in Chinese). doi: 10.11868/j.issn.1001-4381.2019.001138
    [27] 吴坤红, 顾雪萍, 冯连芳, 等. 基于动态共价键制备可重复加工交联聚合物[J]. 高校化学工程学报, 2020, 34(1):1-8. doi: 10.3969/j.issn.1003-9015.2020.01.001

    WU Kunhong, GU Xueping, FENG Lianfang, et al. Preparation of reprocessacle cross-linked polymers via dynamic covalent bonds[J]. Journal of Chemical Engineering of Chinese Universities,2020,34(1):1-8(in Chinese). doi: 10.3969/j.issn.1003-9015.2020.01.001
    [28] LIU T, ZHAO B, ZHANG J. Recent development of repairable, malleable and recyclable thermosetting polymers through dynamic transesterification[J]. Polymer,2020,194:122392. doi: 10.1016/j.polymer.2020.122392
    [29] DELAHAVE M, WINNE J M, PREZ F. Internal catalysis in covalent adaptable networks: Phthalate monoester transesterification as a versatile dynamic cross-linking chemistry[J]. Journal of the American Chemical Society,2019,141(38):15277-15287. doi: 10.1021/jacs.9b07269
    [30] HAO C, LIU T, ZHANG S, et al. Triethanolamine-mediated covalent adaptable epoxy network: Excellent mechanical properties, fast repairing, and easy recycling[J]. Macromolecules, 2020, 53(8): 3110-3118.
    [31] LI Y, LIU T, ZHANG S, et al. Catalyst-free vitrimer elastomer based on dimer acid: Robust mechanical performance, adaptivity and hydrothermal recyclability[J]. Green Chemistry, 2020, 22(3): 870-881.
    [32] 陈子豪, 阮英波, 杨杰. 环氧树脂增韧方法及机理研究进展[J]. 热固性树脂, 2022, 37(1): 64-69.

    CHEN Zihao, RUAN Yingbo, YANG Jie. Research progress on toughening methods and mechanism of epoxy resin[J]. Thermosetting Resin, 2022, 37(1): 64-69(in Chinese).
    [33] ZHAO W, AN L, WANG S. Recyclable high-performance epoxy-Anhydride resins with DMP-30 as the catalyst of transesterification reactions[J]. Polymers,2021,13(2):296. doi: 10.3390/polym13020296
    [34] ASTM. Standard test method for tensile properties of plastics: D638-14[S]. West Conshohocken: ASTM International, 2014.
    [35] 陈平, 王德中. 环氧树脂及其应用[M]. 北京: 化学工业出版社, 2004.

    CHEN Ping, WANG Dezhong. Epoxy resin and its applications[M]. Beijing: Chemical Industry Press, 2004(in Chinese).
    [36] 罗金树, 李鹏, 蔡宏洋, 等. 超支化聚酯增韧环氧体系固化动力学[J]. 玻璃钢/复合材料, 2008(5):16-21.

    LUO Jinshu, LI Peng, CAI Hongyang, et al. Cure kinetics of epoxy resin system toughened by hyperbranched polymers[J]. Fiber Reinforced Plastics/Composites,2008(5):16-21(in Chinese).
    [37] KUANG X, ZHOU Y, SHI Q, et al. Recycling of epoxy thermoset and composites via good solvent assisted and small molecules participated exchange reactions[J]. ACS Sustainable Chemistry & Engineering,2018,8(3):1493-1502.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  1184
  • HTML全文浏览量:  604
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-13
  • 修回日期:  2022-07-30
  • 录用日期:  2022-08-06
  • 网络出版日期:  2022-08-23
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回