留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MWCNT-CB/PDMS复合电极介电弹性体驱动器的制备与性能优化

马丽 丁井鲜 张晓蝶 申莉娜娃 潘久红 郭东杰

马丽, 丁井鲜, 张晓蝶, 等. MWCNT-CB/PDMS复合电极介电弹性体驱动器的制备与性能优化[J]. 复合材料学报, 2022, 39(0): 1-10
引用本文: 马丽, 丁井鲜, 张晓蝶, 等. MWCNT-CB/PDMS复合电极介电弹性体驱动器的制备与性能优化[J]. 复合材料学报, 2022, 39(0): 1-10
Li MA, Jingxian DING, Xiaodie ZHANG, Linawa SHEN, Jiuhong PAN, Dongjie GUO. Fabrication and optimization of dielectric elastomer actuator using MWCNT-CB/PDMS composite electrodes[J]. Acta Materiae Compositae Sinica.
Citation: Li MA, Jingxian DING, Xiaodie ZHANG, Linawa SHEN, Jiuhong PAN, Dongjie GUO. Fabrication and optimization of dielectric elastomer actuator using MWCNT-CB/PDMS composite electrodes[J]. Acta Materiae Compositae Sinica.

MWCNT-CB/PDMS复合电极介电弹性体驱动器的制备与性能优化

基金项目: 基金项目:教育部长江学者与创新团队发展计划(IRT1187);国家自然科学基金-河南联合基金项目(U1704149)
详细信息
    通讯作者:

    郭东杰,博士,教授,研究方向为电活性聚合物 E-mail: djguo@zzuli.edu.cn

  • 中图分类号: TB332; TB383

Fabrication and optimization of dielectric elastomer actuator using MWCNT-CB/PDMS composite electrodes

  • 摘要: 介电弹性体驱动器(DEA)的柔性电极发挥着产生电场和约束介电母体形变的重要作用。本文以一维的多壁碳纳米管(MWCNT)和零维的导电炭黑(CB)为共同导电填料,设计浇注了一系列不同尺寸,不同力学、电学性能的聚二甲基硅氧烷(PDMS)复合电极膜(MWCNT-CB/PDMS)。将电极膜粘附在聚氯乙烯凝胶膜的两侧表面,导入脉冲高压电信号,获得一系列电驱动行为变化的新型介电聚合物驱动器。驱动性能测试结果表明:电极覆盖率的增加有利于DEA位移输出;电极厚度的增加限制了DEA的位移输出;随着MWCNT掺杂量的增加,位移输出呈现先增后减的趋势。正交实验结果表明:MWCNT掺杂量对DEA的驱动位移有显著的影响,电极覆盖率和厚度有高度显著的影响;最优组合下,驱动器的位移输出为1.71 mm。

     

  • 图  1  两种介电弹性体驱动器(DEA)驱动方式的示意图

    Figure  1.  Schematic illustration shows two kinds of driven modes of dielectric elastomer actuator (DEA)

    图  2  驱动性能测试平台示意图

    Figure  2.  Illustration of the setup for evaluating DEA’s electromechanical properties

    图  3  电极膜和母体膜的相关物性表征:(a) 不同MWCNT掺杂后多壁碳纳米管-导电炭黑/聚二甲基硅氧烷(MWCNT-CB/PDMS)复合电极膜。MWCNT-CB/PDMS复合膜的应力-应变曲线;(b) MWCNT-CB/PDMS复合膜弹性模量;(c) PVC母体膜的应力-应变曲线;(d) MWCNT-CB/PDMS复合膜的方块电阻

    Figure  3.  Related physical characterizations of the matrix and electrode films. (a) typical stress-strain curves for the multi-wall carbon nanotubes-conductive carbon black/polydimethyl siloxane (MWCNT-CB/PDMS) electrode films with different MWCNT loadings; (b) their calculated Young’s moduli; (c) stress-strain curves for the PVC matrixes; (d) sheet resistances for the MWCNT-CB/PDMS composite electrode films.

    图  4  剖面场发射扫描电子显微镜图: (a) DEA的夹心结构;(b) MWCNT-CB/PDMS电极与聚合物的界面结构;(c) PVC母体膜;(d) MWCNT-CB/PDMS电极。

    Figure  4.  Cross sectional FESEM observation. (a) the sandwiched structure of DEA; (b) the connection between the MWCNT-CB/PDMS electrode and the PVC matrix; (c) PVC matrix; (d) MWCNT-CB/PDMS electrode.

    图  5  不同驱动电场下的DEA输出位移演变。PVC复合膜中DOP∶PVC的质量比为3∶1,PDMS电极含4wt% MWCNT,驱动信号为1.0 Hz、占空比为0.5的方波。

    Figure  5.  Evolution of DEA’s outputted displacement with electronic field. The PVC matrix composite contained 75wt% DOP, and the PDMS electrode contained 4 wt % MWCNT. The driven signal was square wave with 1.0 Hz frequency and 50 % duty ratio.

    图  6  位移输出性能比较:不同MWCNT掺杂量、电极覆盖率、电极厚度下的位移响应曲线(a、d、g);局部位移图(b、e、h);具体的位移输出数据(c、f、i)。(a-c)中,电极厚度为50 μm,覆盖率为65%;(b-f)中,MWCNT的质量份数为4wt%,电极厚度为50 μm;(g-i)中,MWCNT的质量份数为4wt%,覆盖率为65%。驱动信号均为1.0 Hz、占空比为0.5的方波。

    Figure  6.  Comparison of displacement output: displacement curves for different MWCNT loadings (a, d, g), coating ratio (b, e, h), and thickness (c, f, i); for DEA of a-c, the electrode thickness is 50μm, and the coating ratio is 65%; for DEA of b-f, the electrode thickness is 50μm, and the MWCNT loading is 65%; for DEA of g-i, the MWCNT loading is 65%, and the coating ratio is 65%. The driven signal was square wave with 1.0 Hz frequency and 50 % duty ratio

    图  7  正交实验中各样品最大致动位移的柱状图

    Figure  7.  Columns of the maximum displacements for each DEA sample in the orthogonal experiments.

    表  1  DEA相关参数与性能

    Table  1.   DEA-related parameters and properties

    Mass fraction of
    MWCNT/wt%
    Thickness/
    mm
    Elongation at
    break/%
    Tensile strength/
    MPa
    Elastic modulus/
    MPa
    Electrode resistance/
    (Ω·sq−1)
    Electric conductivity /
    (s·cm−1)
    00.3063261.1180.61211430.026
    20.3913081.3250.8925730.059
    40.3902801.5331.1552930.121
    60.3172541.7091.5291470.250
    80.3142241.8434.032560.239
    下载: 导出CSV

    表  2  DEA电驱动响应数据

    Table  2.   DEA’s electromechanical response data

    Mass fraction of MWCNT/wt%Displacementa
    /mm
    Coverage ratio/%Displacementb
    /mm
    Thickness
    /mm
    Displacementc
    /mm
    00.99350.870.0521.41
    21.24501.150.1011.22
    41.41651.390.1531.02
    61.31801.610.2090.88
    81.12951.710.2520.65
    Notes: a The electrode coverage was 65%, the thickness was 50% μm, the doping amount of MWCNT was changed; b The doping amount of MWCNT is 4wt%, the electrode thickness was 50 μm, the electrode coverage was changed; c The doping amount of MWCNT was 4wt%, the electrode coverage was 65%, and the electrode thickness was changed.
    下载: 导出CSV

    表  3  正交实验水平因素表

    Table  3.   Orthogonal experimental level factors

    FactorA (MWCNT doping/wt%)C (Coverage ratio/%)D (Thickness/mm)
    10950.052
    22800.101
    34650.153
    46500.209
    58350.252
    下载: 导出CSV

    表  4  正交实验方法与设计

    Table  4.   Experimental design of an orthogonal array method

    Experimental groupABCD(Blank group)Xi(Displacement
    /mm)
    1 1 1 1 1 1.42
    2 1 2 2 2 1.09
    3 1 3 3 3 0.75
    4 1 4 4 4 0.36
    5 1 5 5 5 0.28
    6 2 1 2 3 1.56
    7 2 2 3 4 1.13
    8 2 3 4 5 0.69
    9 2 4 5 1 0.46
    10 2 5 1 2 0.87
    11 3 1 3 5 1.49
    12 3 2 4 1 1.05
    13 3 3 5 2 0.65
    14 3 4 1 3 1.15
    15 3 5 2 4 0.79
    16 4 1 4 2 1.14
    17 4 2 5 3 0.83
    18 4 3 1 4 1.31
    19 4 4 2 5 0.97
    20 4 5 3 1 0.53
    21 5 1 5 4 0.92
    22 5 2 1 5 1.36
    23 5 3 2 1 0.99
    24 5 4 3 2 0.61
    25 5 5 4 3 0.75
    Ij 3.91 6.53 6.11 4.46
    IIj 4.71 5.47 5.41 4.37
    IIIj 5.13 4.38 4.51 5.04
    IVj 4.77 3.55 3.98 4.49
    j 4.63 3.21 3.14 4.78
    Rj 1.23 3.32 2.97 0.67
    Sj 0.16 1.50 1.09 0.06
    下载: 导出CSV

    表  5  正交实验方差分析结果

    Table  5.   Orthogonal experimental ANOVA results

    Variance sourceSum of deviation squaresDegree of freedomSum of squares of average deviationF valueSignificance
    A0.1640.042.97**
    B1.5040.3827.49***
    C1.0940.2719.87***
    D0.0640.021.15
    Notes: ** means that the factor has a significant impact on the experiment results, *** means that the factor has a highly significant impact on the experiment results.
    下载: 导出CSV
  • [1] JI X, LIU X, CACUCCIOLO V, et al. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators[J]. Science Robotics,2019,4(37):eaaz6451. doi: 10.1126/scirobotics.aaz6451
    [2] CHU H, HU X, WANG Z, et al. Unipolar stroke, electroosmotic pump carbon nanotube yarn muscles[J]. Science,2021,371(6528):494-498. doi: 10.1126/science.abc4538
    [3] JI X, LIU X, CACUCCIOLO V, et al. Untethered feel-through haptics using 18-µm thick dielectric elastomer actuators[J]. Advanced Functional Materials,2021,31(39):2006639. doi: 10.1002/adfm.202006639
    [4] LI G, CHEN X, ZHOU F, et al. Self-powered soft robot in the Mariana Trench[J]. Nature,2021,591(7848):66-71. doi: 10.1038/s41586-020-03153-z
    [5] CHEN Y, ZHAO H, MAO J, et al. Controlled flight of a microrobot powered by soft artificial muscles[J]. Nature,2019,575(7782):324-329. doi: 10.1038/s41586-019-1737-7
    [6] YOU I, MACKANIC D G, MATSUHISA N, et al. Artificial multimodal receptors based on ion relaxation dynamics[J]. Science,2020,370(6519):961-965. doi: 10.1126/science.aba5132
    [7] ZHAO H, HUSSAIN A M, ISRAR A, et al. A wearable soft haptic communicator based on dielectric elastomer actuators[J]. Soft robotics,2020,7(4):451-461. doi: 10.1089/soro.2019.0113
    [8] SHIAN S, BERTOLDI K, CLARKE D R. Dielectric elastomer based “grippers” for soft robotics[J]. Advanced Materials,2015,27(43):6814-6819. doi: 10.1002/adma.201503078
    [9] SHINTAKE J, ROSSET S, SCHUBERT B, et al. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators[J]. Advanced materials,2016,28(2):231-238. doi: 10.1002/adma.201504264
    [10] PELRINE R, KORNBLUH R, PEI Q, et al. High-speed electrically actuated elastomers with strain greater than 100%[J]. Science,2000,287(5454):836-839. doi: 10.1126/science.287.5454.836
    [11] TIAN M, YAO Y, LIU S, et al. Separated-structured all-organic dielectric elastomer with large actuation strain under ultra-low voltage and high mechanical strength[J]. Journal of Materials Chemistry A,2015,3(4):1483-1491. doi: 10.1039/C4TA04197F
    [12] SUN H, LIU X, LIU S, et al. Silicone dielectric elastomer with improved actuated strain at low electric field and high self-healing efficiency by constructing supramolecular network[J]. Chemical Engineering Journal,2020,384:123242. doi: 10.1016/j.cej.2019.123242
    [13] YIN L J, ZHAO Y, ZHU J, et al. Soft, tough, and fast polyacrylate dielectric elastomer for non-magnetic motor[J]. Nature Communications,2021,12(1):1-10. doi: 10.1038/s41467-020-20314-w
    [14] BOZLAR M, PUNCKT C, KORKUT S, et al. Dielectric elastomer actuators with elastomeric electrodes[J]. Applied physics letters,2012,101(9):091907. doi: 10.1063/1.4748114
    [15] ZHANG J, LIU L, CHEN H. Electromechanical properties of soft dissipative dielectric elastomer actuators influenced by electrode thickness and conductivity[J]. Journal of Applied Physics,2020,127(18):184902. doi: 10.1063/5.0001580
    [16] MA G, WU X, CHEN L, et al. Characterization and Optimization of Elastomeric Electrodes for Dielectric Elastomer Artificial Muscles[J]. Materials,2020,13(23):5542. doi: 10.3390/ma13235542
    [17] 陈鹿民, 王晨, 王才东, 等. 不对称电极介电弹性体的电致动响应与有限元分析[J]. 功能材料, 2017, 48(6):6074-6079. doi: 10.3969/j.issn.1001-9731.2017.06.013

    CHEN Lumin, WANG Chen, WANG Caidong, et al. Electrodynamic response and finite element analysis of dielectric elastomers with asymmetric electrodes[J]. Functional Materials,2017,48(6):6074-6079(in Chinese). doi: 10.3969/j.issn.1001-9731.2017.06.013
    [18] GUO D, HAN Y, DING Y, et al. Prestrain-free electrostrictive film sandwiched by asymmetric electrodes for out-of-plane actuation[J]. Chemical Engineering Journal,2018,352:876-885. doi: 10.1016/j.cej.2018.07.094
    [19] PERUTZ S, WANG J, KRAMER E J, et al. Synthesis and surface energy measurement of semi-fluorinated, low-energy surfaces[J]. Macromolecules,1998,31(13):4272-4276. doi: 10.1021/ma9700993
    [20] 邓火英, 梁馨, 顾轶卓, 等. MWCNTs 对环氧树脂及多尺度 MWCNTs-碳纤维/环氧树脂复合材料力学性能的影响[J]. 复合材料学报, 2018, 35(11):3073-3080.

    DENG Huoying, LIANG Xin, GU Yizhuo, et al. Effect of MWCNTs- CNTs on mechanical properties of epoxy resin and multi-scale MWCNTs carbon fiber / epoxy resin composites[J]. Journal of Composite Materials,2018,35(11):3073-3080(in Chinese).
    [21] ROMASANTA L J, LÓPEZ-MANCHADO M A, VERDEJO R. Increasing the performance of dielectric elastomer actuators: A review from the materials perspective[J]. Progress in Polymer Science,2015,51:188-211. doi: 10.1016/j.progpolymsci.2015.08.002
    [22] MADSEN F B, DAUGAARD A E, HVILSTED S, et al. The current state of silicone-based dielectric elastomer transducers[J]. Macromolecular rapid communications,2016,37(5):378-413. doi: 10.1002/marc.201500576
    [23] HUANG JIANJIAN, WANG FANG, MA LI, et al. Vinylsilane-rich silicone filled by polydimethylsiloxane encapsulated carbon black particles for dielectric elastomer actuator with enhanced out-of-plane actuations[J]. Chemical Engineering Journal,2022,428:1385-8947.
    [24] 赵中国, 艾桃桃, 刘国瑞, 等. 多壁碳纳米管-聚氨酯/聚丙烯复合材料导电网络结构的演变与性能调控[J]. 复合材料学报, 2021, 38(3):770-779.

    ZHAO Zhongguo, AI Taotao, LIU Guorui, et al. Evolution and performance Control of Conductive Network structure of Multi-walled carbon Nanotubes-Polyurethane / Polypropylene Composites[J]. Acta Compositae Sinica,2021,38(3):770-779(in Chinese).
    [25] OPRIS D M, MOLBERG M, WALDER C, et al. New silicone composites for dielectric elastomer actuator applications in competition with acrylic foil[J]. Advanced Functional Materials,2011,21(18):3531-3539. doi: 10.1002/adfm.201101039
    [26] LI Y, HASHIMOTO M. PVC gel based artificial muscles: Characterizations and actuation modular constructions[J]. Sensors and Actuators A:Physical,2015,233:246-258. doi: 10.1016/j.sna.2015.07.010
    [27] 石磊, 徐学诚. 多壁碳纳米管/聚苯乙烯-聚氯乙烯复合材料的导电特性[J]. 复合材料学报, 2013, 30(4):7-12.

    SHI Lei, XU Xuecheng. Electrical conductivity of multi-walled carbon nanotubes / polystyrene-polyvinyl chloride composites[J]. Journal of Composite Materials,2013,30(4):7-12(in Chinese).
    [28] ROSSET S, SHEA H R. Flexible and stretchable electrodes for dielectric elastomer actuators[J]. Applied Physics A,2013,110(2):281-307. doi: 10.1007/s00339-012-7402-8
    [29] 闫茜茜, 何田. 一种基于介电弹性体驱动的软体机器人设计方法[J]. 青岛大学学报:工程技术版, 2021, 36(3):1-5.

    YAN Qianqian, HE Tian. A design method of software robot based on dielectric elastomer drive[J]. Journal of Qingdao University:engineering and Technology Edition,2021,36(3):1-5(in Chinese).
    [30] KEPLINGER C, KALTENBRUNNER M, ARNOLD N, et al. Röntgen’s electrode-free elastomer actuators without electromechanical pull-in instability[J]. Proceedings of the National Academy of Sciences,2010,107(10):4505-4510. doi: 10.1073/pnas.0913461107
    [31] FOO C C, CAI S, KOH S J A, et al. Model of dissipative dielectric elastomers[J]. Journal of Applied Physics,2012,111:034102. doi: 10.1063/1.3680878
    [32] 何青松, 于敏, 丁燕, 等. 正交实验设计优化离子聚合物金属复合材料的力输出性能[J]. 科学通报, 2011, 56(14):1144-1152.

    HE Qingsong, YU Min, DING Yan, et al. Orthogonal experimental design is designed to optimize the force output properties of ionic polymer metal composites[J]. Science Bulletin,2011,56(14):1144-1152(in Chinese).
  • 加载中
计量
  • 文章访问数:  133
  • HTML全文浏览量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-10
  • 录用日期:  2022-01-15
  • 修回日期:  2022-01-04
  • 网络出版日期:  2022-02-16

目录

    /

    返回文章
    返回