留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硝酸钠/兰炭灰复合相变储热材料的制备及性能

药晨华 熊亚选 任静 宋超宇 王辉祥 丁玉龙

药晨华, 熊亚选, 任静, 等. 硝酸钠/兰炭灰复合相变储热材料的制备及性能[J]. 复合材料学报, 2022, 40(0): 1-10
引用本文: 药晨华, 熊亚选, 任静, 等. 硝酸钠/兰炭灰复合相变储热材料的制备及性能[J]. 复合材料学报, 2022, 40(0): 1-10
Chenhua YAO, Yaxuan XIONG, Jing REN, Chaoyu SONG, Huixiang WANG, Yulong DING. Preparation and properties of sodium nitrate/semi-coke ash shape-stable phase change composite[J]. Acta Materiae Compositae Sinica.
Citation: Chenhua YAO, Yaxuan XIONG, Jing REN, Chaoyu SONG, Huixiang WANG, Yulong DING. Preparation and properties of sodium nitrate/semi-coke ash shape-stable phase change composite[J]. Acta Materiae Compositae Sinica.

硝酸钠/兰炭灰复合相变储热材料的制备及性能

基金项目: 北京市教委科研项目(KM201910016011)
详细信息
    通讯作者:

    熊亚选,博士,教授,硕士生导师,研究方向为高温熔盐储热 E-mail: xiongyaxuan@bucea.edu.cn

  • 中图分类号: TB332

Preparation and properties of sodium nitrate/semi-coke ash shape-stable phase change composite

  • 摘要: 工业固废兰炭灰(SCA)大量堆积会造成局部生态环境破坏,为促进工业固废兰炭灰的规模化消纳及复合相变储热材料的低成本制备,创新提出兰炭灰作为骨架材料制备复合相变储热材料。为研究兰炭灰骨架复合相变储热材料的可行性,制备了8种不同比例的NaNO3/兰炭灰复合相变储热材料,采用差示扫描量热法、激光导热分析法、微观形貌分析法、定速加压法和X射线衍射法对NaNO3/兰炭灰复合相变储热材料的关键性能进行表征。结果表明,未发生明显泄露和形变的样品NaNO3/SCA-50具有最佳兰炭灰与NaNO3质量比(5∶5),其抗压强度达到96.98 MPa,100~380℃范围内储热密度达到338.24 J/g;经4027次加热/冷却循环后,样品NaNO3/SCA-50保持良好的热稳定性和化学相容性。兰炭灰作为骨架材料制备复合相变储热材料具有较好的可行性,为工业固废兰炭灰的资源化利用提供了新的途径。

     

  • 图  1  NaNO3/兰炭灰复合相变储热材料的制备流程

    Figure  1.  Schematic of the shaping process of the NaNO3/semi-coke ash shape-stable phase change composites (SSPCCs)

    图  2  不同配比NaNO3/兰炭灰复合相变储热材料样品

    Figure  2.  Photographs of the NaNO3/semi-coke ash SSPCC samples with different ratios

    图  9  PCM,样品NaNO3/SCA-50 和兰炭灰的XRD曲线

    Figure  9.  The XRD curves of the PCM, sample NaNO3/SCA-50 and semi-coke ash

    图  3  PCM、样品NaNO3/SCA-50和NaNO3/SCA-47.5的比热对比

    Figure  3.  Specific heat of the PCM, sample NaNO3/SCA-50 and NaNO3/SCA-47.5

    图  4  样品NaNO3/SCA-50以100℃为基点的储热密度曲线

    Figure  4.  Thermal energy storage capacity of the sample NaNO3/SCA-50 based on 100℃

    图  5  样品NaNO3/SCA-50的热扩散率和导热系数

    Figure  5.  Thermal diffusivity and thermal conductivity of the sample NaNO3/SCA-50

    图  6  NaNO3/SCA样品的力学性能

    Figure  6.  Mechanical property of the NaNO3/SCA samples

    图  7  兰炭灰,样品NaNO3/SCA-60和NaNO3/SCA-50的SEM图像

    Figure  7.  SEM images of the semi-coke ash, sample NaNO3/SCA-60 and NaNO3/SCA-50

    图  8  样品NaNO3/SCA-50的EDS元素映射图

    Figure  8.  EDS element mapping images of the sample NaNO3/SCA-50

    图  10  NaNO3和兰炭灰组分间反应的吉布斯自由能

    Figure  10.  Gibbs free energy of reactions between semi-coke ash component and NaNO3

    图  11  4027次加热/冷却循环过程中样品NaNO3/SCA-50的质量变化率

    Figure  11.  Mass change rate of the sample NaNO3/SCA-50 during 4027 heating/cooling cycles

    图  12  样品NaNO3/SCA-50未进行加热/冷却循环、循环500次和4027次后的比热对比

    Figure  12.  Specific heat of the sample NaNO3/SCA-50 before and after 500, 4 027 heating/cooling cycles

    图  13  样品NaNO3/SCA-50未进行加热/冷却循环、循环500次和4027次后以100℃为基点的储热密度曲线

    Figure  13.  Thermal energy storage capacity of the sample NaNO3/SCA-50 before and after 500, 4027 heating/cooling cycles based on 100℃

    图  14  样品NaNO3/SCA-50未进行加热/冷却循环、循环500次和4027次后的XRD曲线

    Figure  14.  The XRD curves of the sample NaNO3/SCA-50 before and after 500, 4027 heating/cooling cycles

    图  15  样品所承受压力与挤压头位移的关系

    Figure  15.  Relationship between load pressure on samples and displacement of squeeze head

    表  1  兰炭灰的组成成分

    Table  1.   Chemical compositions of semi-coke ash

    CompositionCaOSiO2Fe2O3Al2O3MgOOthers
    Content/wt.%39.4918.2216.7110.612.0512.92
    下载: 导出CSV

    表  2  不同配比NaNO3/SCA样品的详细情况

    Table  2.   Details of the NaNO3/SCA samples with different proportions

    SamplesNaNO3/wt.%Semi-coke ash/wt.%Degree of PCM leakage
    NaNO3/SCA-606040Slight
    NaNO3/SCA-505050No
    NaNO3/SCA-47.547.552.5No
    NaNO3/SCA-454555No
    NaNO3/SCA-42.542.557.5No
    NaNO3/SCA-404060No
    NaNO3/SCA-353565No
    NaNO3/SCA-303070No
    下载: 导出CSV

    表  3  4027次加热/冷却循环过程中样品NaNO3/SCA-50的形貌记录

    Table  3.   Morphology recording of sample NaNO3/SCA-50 during 4027 heating/cooling cycles

    Sample morphology
    Number of cycles050820014027
    下载: 导出CSV

    表  4  样品NaNO3/SCA-50加热/冷却循环前后的相变性能

    Table  4.   Phase change properties of sample NaNO3/SCA-50 before and after heating/cooling cycles

    Number of cyclesOnset temperature/℃Latent heat/(J·g-1)Terminal temperature/℃
    before cycles297.659.14315.3
    500 cycles298.863.31315.9
    4027 cycles298.965.51314.4
    下载: 导出CSV
  • [1] 林文珠, 凌子夜, 方晓明, 等. 相变储热的传热强化技术研究进展[J]. 化工进展, 2021, 40(09):5166-5179.

    LIN Wenzhu, LING Ziye, FANG Xiaoming, et al. Research progress on heat transfer of phase change material heat storage technology[J]. Chemical Industry and Engineering Progress,2021,40(09):5166-5179(in Chinese).
    [2] MCCORMICK P G, SUEHRCKE H. The effect of intermittent solar radiation on the performance of PV systems[J]. Solar Energy,2018,171:667-674. doi: 10.1016/j.solener.2018.06.043
    [3] HAIKARAINEN C, PETTERSSON F, SAXEN H. Optimising the regional mix of intermittent and flexible energy technologies[J]. Journal of Cleaner Production,2019,219:508-517. doi: 10.1016/j.jclepro.2019.02.103
    [4] 陈海生, 刘畅, 徐玉杰, 等. 储能在碳达峰碳中和目标下的战略地位和作用[J]. 储能科学与技术, 2021, 10(05):1477-1485.

    CHEN Haisheng, LIU Chang, XU Yujie, et al. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality[J]. Energy Storage Science and Technology,2021,10(05):1477-1485(in Chinese).
    [5] LI Q, LI C, DU Z, et al. A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications[J]. Applied Energy,2019,255:113806. doi: 10.1016/j.apenergy.2019.113806
    [6] 李昭, 李宝让, 陈豪志, 等. 相变储热技术研究进展[J]. 化工进展, 2020, 39(12):5066-5085.

    LI Zhao, LI Baorang, CHEN Haozhi, et al. State of the art review on phase change thermal energy storage technology[J]. Chemical Industry and Engineering Progress,2020,39(12):5066-5085(in Chinese).
    [7] JIANG F, ZHANG L, SHE X, et al. Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review[J]. Renewable and Sustainable Energy Reviews,2020,119:109539. doi: 10.1016/j.rser.2019.109539
    [8] ZHU J, LI R, ZHOU W, et al. Fabrication of Al2O3-NaCl composite heat storage materials by one-step synthesis method[J]. Journal of Wuhan University of Technology (Materials Science),2016,31(05):950-954. doi: 10.1007/s11595-016-1473-x
    [9] GE Z, YE F, DING Y. Composite Materials for Thermal Energy Storage: Enhancing Performance through Microstructures[J]. ChemSusChem,2014,7:1318-1325. doi: 10.1002/cssc.201300878
    [10] LIU R, ZHANG F, SU W, et al. Impregnation of porous mullite with Na2SO4 phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells,2015,134:268-274. doi: 10.1016/j.solmat.2014.12.012
    [11] YU Q, JIANG Z, CONG L, et al. A novel low-temperature fabrication approach of composite phase change materials for high temperature thermal energy storage[J]. Applied Energy,2019,237:367-377. doi: 10.1016/j.apenergy.2018.12.072
    [12] QIN Y, YU X, LENG G, et al. Effect of diatomite content on diatomite matrix based composite phase change thermal storage material. Materials Research Innovations. 2014;18: S2-453-456.
    [13] GHANI S A A, JAMARI S S, ABIDIN S Z. Waste materials as the potential phase change material substitute in thermal energy storage system: a review[J]. Chemical Engineering Communications,2021,208(5):687-707. doi: 10.1080/00986445.2020.1715960
    [14] WANG T, ZHANG T, XU G, et al. A new low-cost high-temperature shape-stable phase change material based on coal fly ash and K2CO3[J]. Solar Energy Materials and Solar Cells,2020,206:110328. doi: 10.1016/j.solmat.2019.110328
    [15] 王燕, 黄云, 姚华, 等. 太阳盐/钢渣定型复合相变储热材料的制备与性能研究 [J]. 过程工程学报, 2021, 21(03): 332-340.

    WANG Yan, HUANG Yun, YAO Hua, et al. Fabrication and characterization of form-stable solar salt/steel slag composite phase change material for thermal energy storage. The Chinese Journal of Process Engineering. 2021, 21(03): 332-340(in Chinese).
    [16] ANAGNOSTOPOULOS A, NAVARRO M E, STEFANIDOU M, et al. Red mud-molten salt composites for medium-high temperature thermal energy storage and waste heat recovery applications[J]. Journal of Hazardous Materials,2021,413:125407. doi: 10.1016/j.jhazmat.2021.125407
    [17] 徐涛, 王海洋, 张建良, 等. 兰炭灰熔融特性的计算模型 [J]. 中国冶金, 2018, 28(12): 15-18.

    XU Tao, WANG Haiyang, ZHANG Jianliang, et al. Calculating model for melting characteristics of semi coke. China Metallurgy. 2018, 28(12): 15-18(in Chinese).
    [18] YU Q, LU Y, ZHANG C, et al. Preparation and thermal properties of novel eutectic salt/nano-SiO2/ expanded graphite composite for thermal energy storage[J]. Solar Energy Materials and Solar Cells,2020,215:110590. doi: 10.1016/j.solmat.2020.110590
    [19] 熊亚选, 药晨华, 宋超宇, 等. 低成本兰炭灰骨架定型相变储热材料的制备及性能研究[J]. 华电技术, 2021, 43(7):62-67. doi: 10.3969/j.issn.1674-1951.2021.07.010

    XIONG Yaxuan, YAO Chenhua, SONG Chaoyu, et al. Preparation and properties of low-cost phase-change heat storage materials based on semi-coke ash[J]. Huadian Technology,2021,43(7):62-67(in Chinese). doi: 10.3969/j.issn.1674-1951.2021.07.010
    [20] XIONG Y, SUN M, WU Y, et al. Effects of synthesis methods on thermal performance of nitrate salt nanofluids for concentrating solar power. Energy & Fuels. 2020;34: 11606-11619.
    [21] GUO Q, WANG T. Study on preparation and thermal properties of sodium nitrate/silica composite as shape-stabilized phase change material[J]. Thermochimica Acta,2015,613:66-70. doi: 10.1016/j.tca.2015.05.023
  • 加载中
计量
  • 文章访问数:  91
  • HTML全文浏览量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-18
  • 录用日期:  2022-01-22
  • 修回日期:  2022-01-18
  • 网络出版日期:  2022-03-05

目录

    /

    返回文章
    返回