留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硝酸钠/兰炭灰复合相变储热材料的制备及性能

药晨华 熊亚选 任静 宋超宇 王辉祥 丁玉龙

药晨华, 熊亚选, 任静, 等. 硝酸钠/兰炭灰复合相变储热材料的制备及性能[J]. 复合材料学报, 2023, 40(1): 300-309. doi: 10.13801/j.cnki.fhclxb.20220222.002
引用本文: 药晨华, 熊亚选, 任静, 等. 硝酸钠/兰炭灰复合相变储热材料的制备及性能[J]. 复合材料学报, 2023, 40(1): 300-309. doi: 10.13801/j.cnki.fhclxb.20220222.002
YAO Chenhua, XIONG Yaxuan, REN Jing, et al. Preparation and properties of sodium nitrate/semi-coke ash shape-stable phase change composite[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 300-309. doi: 10.13801/j.cnki.fhclxb.20220222.002
Citation: YAO Chenhua, XIONG Yaxuan, REN Jing, et al. Preparation and properties of sodium nitrate/semi-coke ash shape-stable phase change composite[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 300-309. doi: 10.13801/j.cnki.fhclxb.20220222.002

硝酸钠/兰炭灰复合相变储热材料的制备及性能

doi: 10.13801/j.cnki.fhclxb.20220222.002
基金项目: 北京市教委科研项目(KM201910016011)
详细信息
    通讯作者:

    熊亚选,博士,教授,硕士生导师,研究方向为高温熔盐储热 E-mail: xiongyaxuan@bucea.edu.cn

  • 中图分类号: TB332

Preparation and properties of sodium nitrate/semi-coke ash shape-stable phase change composite

Funds: Scientific Research Program of Beijing Municipal Education Commission (KM201910016011)
  • 摘要: 工业固废兰炭灰(SCA)大量堆积会造成局部生态环境破坏,为促进工业固废兰炭灰的规模化消纳及复合相变储热材料(SSPCCs)的低成本制备,创新提出兰炭灰作为骨架材料制备复合相变储热材料。为研究兰炭灰骨架复合相变储热材料的可行性,制备了8种不同比例的NaNO3/兰炭灰复合相变储热材料,采用差示扫描量热法、激光导热分析法、微观形貌分析法、定速加压法和X射线衍射法对NaNO3/兰炭灰复合相变储热材料的关键性能进行表征。结果表明,未发生明显泄露和形变的样品NaNO3/SCA-50具有最佳兰炭灰与NaNO3质量比(5∶5),其抗压强度达到96.98 MPa,100~380℃范围内储热密度达到338.24 J/g;经4027次加热/冷却循环后,样品NaNO3/SCA-50保持良好的热稳定性和化学相容性。兰炭灰作为骨架材料制备复合相变储热材料具有较好的可行性,为工业固废兰炭灰的资源化利用提供了新的途径。

     

  • 图  1  NaNO3/SCA复合相变储热材料(SSPCCs)的制备流程

    Figure  1.  Schematic of the shaping process of the NaNO3/SCA shape-stable phase change composites (SSPCCs)

    PVA—Polyvinyl alcohol

    图  2  不同配比NaNO3/兰炭灰复合相变储热材料样品照片

    Figure  2.  Photographs of the NaNO3/SCA SSPCCs with different ratios

    图  9  PCM、NaNO3/SCA-50和兰炭灰的XRD图谱

    Figure  9.  XRD patterns of the PCM, NaNO3/SCA-50 and semi-coke ash

    图  3  PCM、NaNO3/SCA-50和NaNO3/SCA-47.5的比热

    Figure  3.  Specific heat of the PCM, NaNO3/SCA-50 and NaNO3/SCA-47.5

    Tm—Melting point; ΔHm—Latent heat

    图  4  NaNO3/SCA-50以100℃为基点的储热密度

    Figure  4.  Thermal energy storage capacity of NaNO3/SCA-50 based on 100℃

    图  5  NaNO3/SCA-50的热扩散率和导热系数

    Figure  5.  Thermal diffusivity and thermal conductivity of NaNO3/SCA-50

    图  6  NaNO3/SCA的力学性能

    Figure  6.  Mechanical property of NaNO3/SCA samples

    图  7  SCA、NaNO3/SCA-60和NaNO3/SCA-50的SEM图像

    Figure  7.  SEM images of the SCA, NaNO3/SCA-60 and NaNO3/SCA-50

    图  8  NaNO3/SCA-50的EDS元素映射图像

    Figure  8.  EDS element mapping images of NaNO3/SCA-50

    图  10  NaNO3和SCA组分间反应的吉布斯自由能

    Figure  10.  Gibbs free energy of reactions between SCA component and NaNO3

    图  11  4027次加热/冷却循环过程中NaNO3/SCA-50的质量变化率

    Figure  11.  Mass change rate of NaNO3/SCA-50 during 4027 heating/cooling cycles

    图  12  NaNO3/SCA-50未进行加热/冷却循环、循环500次和4027次后的比热

    Figure  12.  Specific heat of NaNO3/SCA-50 before and after 500, 4 027 heating/cooling cycles

    图  13  NaNO3/SCA-50未进行加热/冷却循环、循环500次和4027次后以100℃为基点的储热密度

    Figure  13.  Thermal energy storage capacity of NaNO3/SCA-50 before and after 500, 4027 heating/cooling cycles based on 100℃

    图  14  NaNO3/SCA-50未进行加热/冷却循环、循环500次和4027次后的XRD图谱

    Figure  14.  XRD patterns of NaNO3/SCA-50 before and after 500, 4027 heating/cooling cycles

    图  15  NaNO3/SCA-50所承受压力与挤压头位移的关系

    Figure  15.  Relationship between load pressure on NaNO3/SCA-50 and displacement of squeeze head

    表  1  兰炭灰(SCA)的组成成分

    Table  1.   Chemical compositions of semi-coke ash (SCA)

    Composition Content/wt%
    CaO 39.49
    SiO2 18.22
    Fe2O3 16.71
    Al2O3 10.61
    MgO 2.05
    Others 12.92
    下载: 导出CSV

    表  2  不同配比NaNO3/SCA样品的详细情况

    Table  2.   Details of the NaNO3/SCA samples with different proportions

    SampleNaNO3/wt%SCA/wt%Degree of PCM leakage
    NaNO3/SCA-6060.040.0Slight
    NaNO3/SCA-5050.050.0No
    NaNO3/SCA-47.547.552.5No
    NaNO3/SCA-4545.055.0No
    NaNO3/SCA-42.542.557.5No
    NaNO3/SCA-4040.060.0No
    NaNO3/SCA-3535.065.0No
    NaNO3/SCA-3030.070.0No
    Note: PCM—Phase change material.
    下载: 导出CSV

    表  3  4027次加热/冷却循环过程中NaNO3/SCA-50的形貌记录(直径13 mm)

    Table  3.   Morphologies recording of NaNO3/SCA-50 during 4027 heating/cooling cycles (Diameter of 13 mm)

    Sample morphology
    Number of cycles050820014027
    下载: 导出CSV

    表  4  NaNO3/SCA-50加热/冷却循环前后的相变性能

    Table  4.   Phase change properties of NaNO3/SCA-50 before and after heating/cooling cycles

    Number of cyclesOnset temperature/℃Latent heat/(J·g−1)Terminal temperature/℃
    Before cycle297.659.14315.3
    500 cycles298.863.31315.9
    4027 cycles298.965.51314.4
    下载: 导出CSV
  • [1] 林文珠, 凌子夜, 方晓明, 等. 相变储热的传热强化技术研究进展[J]. 化工进展, 2021, 40(9):5166-5179. doi: 10.16085/j.issn.1000-6613.2021-0460

    LIN Wenzhu, LING Ziye, FANG Xiaoming, et al. Research progress on heat transfer of phase change material heat storage technology[J]. Chemical Industry and Engineering Progress,2021,40(9):5166-5179(in Chinese). doi: 10.16085/j.issn.1000-6613.2021-0460
    [2] MCCORMICK P G, SUEHRCKE H. The effect of intermittent solar radiation on the performance of PV systems[J]. Solar Energy,2018,171:667-674. doi: 10.1016/j.solener.2018.06.043
    [3] HAIKARAINEN C, PETTERSSON F, SAXEN H. Optimising the regional mix of intermittent and flexible energy technologies[J]. Journal of Cleaner Production,2019,219:508-517. doi: 10.1016/j.jclepro.2019.02.103
    [4] 陈海生, 刘畅, 徐玉杰, 等. 储能在碳达峰碳中和目标下的战略地位和作用[J]. 储能科学与技术, 2021, 10(5):1477-1485. doi: 10.19799/j.cnki.2095-4239.2021.0389

    CHEN Haisheng, LIU Chang, XU Yujie, et al. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality[J]. Energy Storage Science and Technology,2021,10(5):1477-1485(in Chinese). doi: 10.19799/j.cnki.2095-4239.2021.0389
    [5] LI Q, LI C, DU Z, et al. A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications[J]. Applied Energy,2019,255:113806. doi: 10.1016/j.apenergy.2019.113806
    [6] 李昭, 李宝让, 陈豪志, 等. 相变储热技术研究进展[J]. 化工进展, 2020, 39(12):5066-5085. doi: 10.16085/j.issn.1000-6613.2020-0376

    LI Zhao, LI Baorang, CHEN Haozhi, et al. State of the art review on phase change thermal energy storage technology[J]. Chemical Industry and Engineering Progress,2020,39(12):5066-5085(in Chinese). doi: 10.16085/j.issn.1000-6613.2020-0376
    [7] JIANG F, ZHANG L, SHE X, et al. Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review[J]. Renewable and Sustainable Energy Reviews,2020,119:109539. doi: 10.1016/j.rser.2019.109539
    [8] ZHU J, LI R, ZHOU W, et al. Fabrication of Al2O3-NaCl composite heat storage materials by one-step synthesis method[J]. Journal of Wuhan University of Technology (Materials Science),2016,31(5):950-954. doi: 10.1007/s11595-016-1473-x
    [9] GE Z, YE F, DING Y. Composite materials for thermal energy storage: Enhancing performance through microstructures[J]. ChemSusChem,2014,7:1318-1325. doi: 10.1002/cssc.201300878
    [10] LIU R, ZHANG F, SU W, et al. Impregnation of porous mullite with Na2SO4 phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells,2015,134:268-274. doi: 10.1016/j.solmat.2014.12.012
    [11] YU Q, JIANG Z, CONG L, et al. A novel low-temperature fabrication approach of composite phase change materials for high temperature thermal energy storage[J]. Applied Energy,2019,237:367-377. doi: 10.1016/j.apenergy.2018.12.072
    [12] QIN Y, YU X, LENG G, et al. Effect of diatomite content on diatomite matrix based composite phase change thermal storage material[J]. Materials Research Innovations. 2014, 18: 453-456.
    [13] GHANI S A A, JAMARI S S, ABIDIN S Z. Waste materials as the potential phase change material substitute in thermal energy storage system: A review[J]. Chemical Engineering Communications,2021,208(5):687-707. doi: 10.1080/00986445.2020.1715960
    [14] WANG T, ZHANG T, XU G, et al. A new low-cost high-temperature shape-stable phase change material based on coal fly ash and K2CO3[J]. Solar Energy Materials and Solar Cells,2020,206:110328. doi: 10.1016/j.solmat.2019.110328
    [15] 王燕, 黄云, 姚华, 等. 太阳盐/钢渣定型复合相变储热材料的制备与性能研究 [J]. 过程工程学报, 2021, 21(3): 332-340.

    WANG Yan, HUANG Yun, YAO Hua, et al. Fabrication and characterization of form-stable solar salt/steel slag composite phase change material for thermal energy storage[J]. The Chinese Journal of Process Engineering. 2021, 21(3): 332-340(in Chinese).
    [16] ANAGNOSTOPOULOS A, NAVARRO M E, STEFANIDOU M, et al. Red mud-molten salt composites for medium-high temperature thermal energy storage and waste heat recovery applications[J]. Journal of Hazardous Materials,2021,413:125407. doi: 10.1016/j.jhazmat.2021.125407
    [17] 徐涛, 王海洋, 张建良, 等. 兰炭灰熔融特性的计算模型 [J]. 中国冶金, 2018, 28(12): 15-18.

    XU Tao, WANG Haiyang, ZHANG Jianliang, et al. Calculating model for melting characteristics of semi coke[J]. China Metallurgy, 2018, 28(12): 15-18(in Chinese).
    [18] YU Q, LU Y, ZHANG C, et al. Preparation and thermal properties of novel eutectic salt/nano-SiO2/ expanded graphite composite for thermal energy storage[J]. Solar Energy Materials and Solar Cells,2020,215:110590. doi: 10.1016/j.solmat.2020.110590
    [19] 熊亚选, 药晨华, 宋超宇, 等. 低成本兰炭灰骨架定型相变储热材料的制备及性能研究[J]. 华电技术, 2021, 43(7):62-67. doi: 10.3969/j.issn.1674-1951.2021.07.010

    XIONG Yaxuan, YAO Chenhua, SONG Chaoyu, et al. Preparation and properties of low-cost phase-change heat storage materials based on semi-coke ash[J]. Huadian Technology,2021,43(7):62-67(in Chinese). doi: 10.3969/j.issn.1674-1951.2021.07.010
    [20] XIONG Y, SUN M, WU Y, et al. Effects of synthesis methods on thermal performance of nitrate salt nanofluids for concentrating solar power[J]. Energy & Fuels, 2020, 34(9): 11606-11619.
    [21] GUO Q, WANG T. Study on preparation and thermal properties of sodium nitrate/silica composite as shape-stabilized phase change material[J]. Thermochimica Acta,2015,613:66-70. doi: 10.1016/j.tca.2015.05.023
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  829
  • HTML全文浏览量:  524
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-18
  • 修回日期:  2022-01-18
  • 录用日期:  2022-01-22
  • 网络出版日期:  2022-02-23
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回