留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于结构参数的平纹机织复合材料等效弹性性能预测

朱俊 桂林 李果 于梦海 王继辉

朱俊, 桂林, 李果, 等. 基于结构参数的平纹机织复合材料等效弹性性能预测[J]. 复合材料学报, 2022, 40(0): 1-11
引用本文: 朱俊, 桂林, 李果, 等. 基于结构参数的平纹机织复合材料等效弹性性能预测[J]. 复合材料学报, 2022, 40(0): 1-11
Jun ZHU, Lin GUI, Guo LI, Menghai YU, Jihui WANG. Prediction of the effective elastic properties for plain woven fabric composite based on the structural parameters[J]. Acta Materiae Compositae Sinica.
Citation: Jun ZHU, Lin GUI, Guo LI, Menghai YU, Jihui WANG. Prediction of the effective elastic properties for plain woven fabric composite based on the structural parameters[J]. Acta Materiae Compositae Sinica.

基于结构参数的平纹机织复合材料等效弹性性能预测

基金项目: 国家国防科技工业局基础科研项目(JCKY2018207 B206);国家国防科技工业局XX关键材料科研项目(TDGC-CL-19-031-2)
详细信息
    通讯作者:

    王继辉,博士,教授,博士生导师,研究方向为聚合物基复合材料 Email:jhwang@whut.edu.cn

  • 中图分类号: TB332

Prediction of the effective elastic properties for plain woven fabric composite based on the structural parameters

  • 摘要: 经向纤维束与纬向纤维束纵横交错引起的纤维弯曲(也称为波纹)是平纹机织复合材料固有特征。首先,提出了一种精确描述平纹机织复合材料单胞3D结构特征的数学表达式。其次,基于经典层合板理论和等应力假设,考虑平纹机织复合材料厚度方向非对称引起的弯曲-拉伸耦合效应以及单胞结构特征,建立了含结构参数的平纹机织复合材料等效弹性性能多参数解析模型。通过数个典型算例验证了建立的多参数解析模型,结果表明:该多参数解析模型预测值与相关文献中有限元模型预测值、解析模型预测值、实验值等均吻合较好;该多参数解析模型预测值尤其是Z向弹性性能预测值,比文献中解析模型预测值更接近于实验值。在此基础上,进一步探讨了纤维束波纹比(包括纤维束波动方向波纹比与纤维束横截面波纹比)、经向与纬向纤维束构成的预成形体厚度、纤维束中弯曲部分的长度、相邻纤维束之间间距等结构参数对平纹机织复合材料弹性性能影响。该多参数解析模型建模方法为研究纺织复合材料力学性能提供了参考。

     

  • 图  1  平纹机织复合材料及其单胞

    Figure  1.  Plain woven fabric composite and the unit cell

    图  2  平纹机织复合材料单胞横截面

    Figure  2.  Cross section of unit cell for plain woven fabric composite

    图  3  波纹比对E-glass/vinyl ester平纹机织复合材料弹性性能影响(1#case)

    Figure  3.  The effects of the waviness ratio on the elastic properties of E-glass/vinyl ester plain woven fabric composite for 1#case

    图  4  经向与纬向纤维束构成的预成形体厚度对E-glass/vinyl ester平纹机织复合材料弹性性能影响(2#case)

    Figure  4.  The effects of the thickness of the preform consisting of the warp and fill fiber strands on the elastic properties of E-glass/vinyl ester plain woven fabric composite for 2#case

    表  1  E-glass/vinyl ester复合材料及其组份材料弹性常数

    Table  1.   Elastic constants for E-glass/vinyl ester composite and the constituents

    (a) Elastic constants of E-glass/vinyl ester composite[15]
    E1/GPaE2=E3/GPaG12=G13/GPaG23/GPav21=v31v23
    57.518.87.447.260.250.29
    Notes: E1, E2 and E3 are the moduli in 1-, 2- and 3- direction, respectively.
    G12, G13 and G23 are the shear moduli in 1-2, 1-3 and 2-3 plane, respectively.
    v21, v31 and v23 are the major Poisson’s ratios in 1-2, 1-3 and 2-3 plane, respectively.
    (b) Elastic constants of the constituent fiber and resin matrix[13]
    constituteE/GPaG/GPav
    E-glass fiber73.030.40.2
    vinyl ester resin matrix3.41.490.35
    Notes: E, G and v are the elastic modulus, the shear modulus and the major Poisson’s ratio of the constituents, respectively.
    下载: 导出CSV

    表  2  本文模型中E-glass/vinyl ester平纹机织复合材料单胞的结构参数

    Table  2.   The unit-cell structural parameters of E-glass/vinyl ester plain woven fabric composite in present model

    af=aw/mmhf=hw/mmgf=gw/mmht=h/mmlx=ly/mmuf=uw/mm
    0.60.0500.100.60.6
    Notes: The subscript ‘f’ refers to fill strand, and the subscript ‘w’ refers to warp strand.
    a, h and u are the fiber strand width, the fiber strand thickness, the length of the curved section of the fiber strand within the unit cell, respectively.
    g is the spacing between the adjacent fiber strands within the unit cell.
    ht is the thickness of the preform consisting of the warp and fill fiber strands within the unit cell.
    lx, ly and h are the length, width and thickness of the unit cell, respectively.
    下载: 导出CSV

    表  3  E-glass/vinyl ester平纹机织复合材料弹性性能

    Table  3.   Elastic properties of E-glass/vinyl ester plain woven fabric composite

    resultsEx=Ey/GPaEz/GPaGyz=Gxz/GPaGxy/GPavyxvzx=vzy
    Present model25.5213.034.825.280.140.31
    Experimental data[13]24.8±1.18.5±2.64.2±0.76.5±0.80.1±0.010.28±0.07
    Analytical model[13]25.3313.465.245.190.120.29
    Analytical model[15]25.8013.265.025.120.150.31
    Notes: Ex, Ey and Ez are the moduli in X-, Y- and Z- direction, respectively.
    Gxy, Gyz and Gxz are the shear moduli in X-Y, Y-Z and X-Z plane, respectively.
    vyx, vzx and νzy are the major Poisson’s ratios in X-Y, X-Z and Y-Z plane, respectively.
    下载: 导出CSV

    表  4  PE/epoxy复合材料及其树脂基体弹性常数[31]

    Table  4.   Elastic constants of PE/epoxy composite and the constituent resin matrix

    materialE1/GPaE2=E3/GPaG12=G13/GPaG23/GPav21=v31v23
    PE/epoxy6.40292.53811.14950.910550.23340.39372
    epoxy resin matrix110.384620.384620.30.3
    Notes: PE refers to the ultra-high molecular weight polyethylene fiber.
    下载: 导出CSV

    表  5  PE/epoxy平纹机织复合材料弹性性能

    Table  5.   Elastic properties of PE/epoxyplain woven fabric composite

    resultsEx=Ey/GPaEz/GPaGyz=Gxz/GPaGxy/GPavyxvzx=vzy
    Present model3.2132.0840.8050.8700.1510.332
    Finite element model[27]3.412.210.8180.8560.1630.301
    下载: 导出CSV

    表  6  E-glass/vinyl ester平纹机织复合材料单胞结构参数

    Table  6.   Structural parameters of the unit cell for E-glass/vinyl ester plain woven fabric composite

    caseaf=aw/mmhf=hw/mmgf=gw/mmh/mmlx=ly/mmuf=uw/mm
    1#0.6variable
    (range: 0-0.3)
    0variable
    (h=ht=hf+hw)
    0.60.6
    2#0.6variable
    (range: 0-0.05)
    00.100.60.6
    3#0.60.0500.100.6variable
    (range: 0-0.6)
    4#0.60.05variable
    (range: 0-0.5)
    0.100.60.6
    下载: 导出CSV

    表  7  纤维束中弯曲部分的长度对E-glass/vinyl ester平纹机织复合材料弹性性能影响(3#case)

    Table  7.   The effects of the length of the curved section of the fiber strand on Elastic properties of E-glass/vinyl ester plain woven fabric composite for 3#case

    uf=uw/mmEx=Ey/GPaEz/GPaGyz=Gxz/GPaGxy/GPavyxvzx=vzy
    0.134.93318.5317.4517.0740.1220.300
    0.233.23017.3656.9936.7160.1240.304
    0.331.43216.4526.5316.3570.1270.303
    0.429.51615.5526.1095.9970.1300.304
    0.527.53414.6455.7095.6370.1330.306
    0.625.51613.7305.3245.2770.1370.308
    下载: 导出CSV

    表  8  相邻纤维束之间间距对E-glass/vinyl ester平纹机织复合材料弹性性能影响(4#case)

    Table  8.   The effects of the spacing between the adjacent fiber strands on Elastic properties of E-glass/vinyl ester plain woven fabric composite for 4#case

    gf=gw/mmEx=Ey/GPaEz/GPaGyz=Gxz/GPaGxy/GPavyxvzx=vzy
    0.125.51613.7305.3245.2770.1370.308
    0.222.44212.2714.7244.7070.1420.312
    0.320.10811.1964.2914.2890.1470.316
    0.418.28310.3703.9643.9710.1520.320
    0.516.8219.7143.7073.7190.1570.324
    0.615.6239.1773.5003.5150.1620.328
    下载: 导出CSV
  • [1] 王琦, 蒋秋梅, 杨旭锋, 等. 三维机织复合材料残余应力/应变多尺度分析及工艺参数优化[J]. 复合材料学报, 2021, 38(4):1167-1176.

    WANG Qi, JIANG Qiumei, YANG Xufeng, et al. Multiscale analysis and process parameters optimization of residual stress/strain of 3 D woven composite[J]. Acta Materiae Compositae Sinica,2021,38(4):1167-1176(in Chinese).
    [2] 张超, 许希武, 许晓静. 三维多向编织复合材料宏细观力学性能有限元分析研究进展[J]. 复合材料学报, 2015, 32(5):1241-1251.

    ZHANG Chao, XU Xiwu, XU Xiaojing. Research progress in finite element analysis on macro-meso mechanical properties of 3 D multi-directional braided composites[J]. Acta Materiae Compositae Sinica,2015,32(5):1241-1251(in Chinese).
    [3] 陈利, 焦伟, 王心淼, 等. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8):62-72. doi: 10.11868/j.issn.1001-4381.2020.000210

    CHEN Li, JIAO Wei, WANG Xin-miao, et al. Research progress on mechanical properties of 3 D woven composites[J]. Journal of Materials Engineering,2020,48(8):62-72(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000210
    [4] 李明, 陈秀华, 汪海. 二维平纹机织复合材料弹性性能预测的域分解方法[J]. 复合材料学报, 2012, 29(6):197-205.

    LI Ming, CHEN Xiuhua, WANG Hai. Evaluating the mechanical behavior of 2 D woven fabric composite by domain decomposition method[J]. Acta Materiae Compositae Sinica,2012,29(6):197-205(in Chinese).
    [5] 卢子兴, 徐强, 王伯平, 等. 含缺陷平纹机织复合材料拉伸力学行为数值模拟[J]. 复合材料学报, 2011, 28(6):200-207.

    LU Zixing, XU Qiang, WANG Boping, et al. Numerical simulation of plain weave composites with defects under unidirectional tension[J]. Acta Materiae Compositae Sinica,2011,28(6):200-207(in Chinese).
    [6] 徐焜, 许希武, 汪海. 三维四向编织复合材料的几何建模及刚度预报[J]. 复合材料学报, 2005, 22(1):133-138. doi: 10.3321/j.issn:1000-3851.2005.01.024

    XU Kun, XU Xiwu, WANG Hai. On geometrical model and stiffness prediction of 3 D 4-Directional braided composites[J]. Acta Materiae Compositae Sinica,2005,22(1):133-138(in Chinese). doi: 10.3321/j.issn:1000-3851.2005.01.024
    [7] 燕瑛, 楼畅, 成传贤, 等. 机织复合材料力学性能的细观分析与实验研究[J]. 复合材料学报, 2001, 18(2):109-113. doi: 10.3321/j.issn:1000-3851.2001.02.025

    YAN Ying, LOU Chang, CHENG Chuanxian, et al. Micromechanical analysis and experimental evaluation of the property of woven composite materials[J]. Acta Materiae Compositae Sinica,2001,18(2):109-113(in Chinese). doi: 10.3321/j.issn:1000-3851.2001.02.025
    [8] Tina Olfatbakhsh, Abbas S. Milani. A highly interpretable materials informatics approach for predicting microstructure-property relationship in fabric composites[J]. Composites Science and Technology,2022,217:109080. doi: 10.1016/j.compscitech.2021.109080
    [9] 高旭东, 马贵春, 姚君. 三维机织复合材料力学性能研究[J]. 机械工程与自动化, 2013, 2:220-221. doi: 10.3969/j.issn.1672-6413.2013.03.093

    GAO Xudong, MA Guichun, YAO Jun. Study on mechanical properties of 3 D woven composites[J]. Mechanical Engineering & Automation,2013,2:220-221(in Chinese). doi: 10.3969/j.issn.1672-6413.2013.03.093
    [10] ZHOU Chuwei. Micro Mechanical model of 3 D woven composites[J]. Chinese Journal of Aeronautics,2005,18(1):40-46. doi: 10.1016/S1000-9361(11)60280-X
    [11] Li D S, Dang M G, Jiang L. Elevated temperature effect on tension fatigue behavior and failure mechanism of carbon/epoxy 3 D angle-interlock woven composites[J]. Composite Structures,2021,268:113897. doi: 10.1016/j.compstruct.2021.113897
    [12] Scida D, Aboura Z, Benzeggagh M L, et al. Prediction of the elastic behaviour of hybrid and non-hybrid woven composites[J]. Composites Science and Technology,1998,57(12):1727-1740. doi: 10.1016/S0266-3538(97)00105-X
    [13] Scida D, Aboura Z, Benzeggagh M L, et al. A micromechanics model for 3 D elasticity and failure of woven-fibre composite materials[J]. Composites Science and Technology,1999,59(4):505-517. doi: 10.1016/S0266-3538(98)00096-7
    [14] Leischner U, Jonhson A F. Micromechanics analysis of hybrid woven fabric composites under tensile and compression load[J]. Composite Material Technology,1994,4:397-405.
    [15] Donadon M V, Falzon B G, Iannucci L, et al. A 3-D micromechanical model for predicting the elastic behaviour of woven laminates[J]. Composites Science and Technology,2007,67:2467-2477. doi: 10.1016/j.compscitech.2006.12.019
    [16] 陈继刚, 薛亚红, 闫世程. 二维机织复合材料弹性常数的有限元法预测[J]. 复合材料学报, 2016, 33(8):1702-1709.

    CHEN Jigang, XUE Yahong, YAN Shicheng. Finite element prediction of elastic constants for 2 D woven fabric composite[J]. Acta Materiae Compositae Sinica,2016,33(8):1702-1709(in Chinese).
    [17] 易洪雷, 丁辛. 三维机织复合材料的弹性性能预报模型[J]. 力学学报, 2003, 35(5):569-577. doi: 10.3321/j.issn:0459-1879.2003.05.008

    YI Honglei, DING Xin. A model to predict elastic properties of 3 D woven composites[J]. Acta Mechanic Sinica,2003,35(5):569-577(in Chinese). doi: 10.3321/j.issn:0459-1879.2003.05.008
    [18] 王立朋, 燕瑛. 编织复合材料弹性性能的细观分析及试验研究[J]. 复合材料学报, 2004, 21(4):152-156. doi: 10.3321/j.issn:1000-3851.2004.04.030

    WANG Lipeng, YAN Ying. Micro analysis and experimental study of the elastic properties of braided composites structure[J]. Acta Materiae Compositae Sinica,2004,21(4):152-156(in Chinese). doi: 10.3321/j.issn:1000-3851.2004.04.030
    [19] ZHOU Guangming, ZHOU Chuwei, WANG Xinfeng. Micro mechanical analysis of 3-D woven composites[J]. Transactions of Nanjing University of Aeronautics & Astronautics,2004,21(3):163-167.
    [20] 余育苗, 王肖钧, 李永池, 等. 三维正交机织复合材料的单胞模型及应用[J]. 复合材料学报, 2009, 26(4):181-185. doi: 10.3321/j.issn:1000-3851.2009.04.032

    YU Yumiao, WANG Xiaojun, LI Yongchi, et al. Cell model of 3 D orthogonal woven composite and its application[J]. Acta Materiae Compositae Sinica,2009,26(4):181-185(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.04.032
    [21] 郑君, 温卫东, 崔海涛, 等. 2.5维机织结构复合材料的几何模型[J]. 复合材料学报, 2008, 25(2):143-148. doi: 10.3321/j.issn:1000-3851.2008.02.024

    ZHENG Jun, WEN Weidong, CUI Haitao, et al. Geometric model of 2.5 dimensional woven structures[J]. Acta Materiae Compositae Sinica,2008,25(2):143-148(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.02.024
    [22] 梁仕飞, 矫桂琼, 王波. 三维机织C/C-SiC复合材料弹性性能预测[J]. 复合材料学报, 2011, 28(1):138-142.

    LIANG Shifei, JIAO Guiqiong, WANG Bo. Prediction of elastic properties of three dimensional woven C/C-SiC composite[J]. Acta Materiae Compositae Sinica,2011,28(1):138-142(in Chinese).
    [23] 顾卫平, 徐斌, 张雪雯. 基于均匀化方法的三维正交机织复合材料弹性性能预测[J]. 机械科学与技术, 2013, 32(12):1785-1788.

    Gu Weiping, Xu Bin, Zhang Xuewen. Prediction of the elastic property of 3 D woven composites based on the homogenization method[J]. Mechanical Science and Technology for Aerospace Engineering,2013,32(12):1785-1788(in Chinese).
    [24] 边天涯, 关志东, 刘发齐, 等. 含孔隙基体缎纹编织复合材料面内压缩弹性性能预报[J]. 北京航空航天大学学报, 2016, 42(5):1016-1024.

    BIAN Tianya, GUAN Zhidong, LIU Faqi, et al. Prediction on in-plane compression elastic properties of satin weave composites with pore matrix[J]. Journal of Beijing University of Aeronautics and Astronautics,2016,42(5):1016-1024(in Chinese).
    [25] Li Z G, Li D S, H Zhu, et al. Mechanical properties prediction of 3 D angle-interlock woven composites by finite element modeling method[J]. Materials Today Communications,2020,22:100769. doi: 10.1016/j.mtcomm.2019.100769
    [26] Zhao C Q, Li D S, Ge T Q, et al. Experimental study on the compression properties and failure mechanism of 3 D integrated woven spacer composites[J]. Materials & Design,2014,56:50-59.
    [27] Li S, Zhou C, Yu H, et al. Formulation of a unit cell of a reduced size for plain weave textile composites[J]. Computational Materials Science,2011,50(5):1770-1780. doi: 10.1016/j.commatsci.2011.01.013
    [28] Naik N K, Shembekar P S. Elastic behavior of woven fabric composites: I—lamina analysis[J]. Journal of Composite Materials,1992,26(15):2196-2225. doi: 10.1177/002199839202601502
    [29] 沈观林, 胡更开. 复合材料力学[J]. 北京:清华大学出版社, 2006:86-91.

    SHEN Guanlin, HU Gengkai. Mechanics of composite materials[J]. Beijing:Tsinghua University Press,2006:86-91(in Chinese).
    [30] 朱俊, 郭万涛, 李想, 等. 含面内波纹缺陷的复合材料层合板刚度性能[J]. 复合材料学报, 2018, 35(4):793-803.

    ZHU Jun, GUO Wantao, LI Xiang, et al. Stiffness of composite laminates with in-plane waviness defect[J]. Acta Materiae Compositae Sinica,2018,35(4):793-803(in Chinese).
    [31] Li S. General unit cells for micromechanical analyses of unidirectional composites[J]. Composites Part A:Applied Science and Manufacturing,2001,32(6):815-826. doi: 10.1016/S1359-835X(00)00182-2
  • 加载中
计量
  • 文章访问数:  78
  • HTML全文浏览量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-17
  • 录用日期:  2022-04-16
  • 修回日期:  2022-04-12
  • 网络出版日期:  2022-04-29

目录

    /

    返回文章
    返回