留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维复合材料激光制孔技术研究进展

陈根余 陶能如 李明全 王彪 肖铮铭

陈根余, 陶能如, 李明全, 等. 碳纤维复合材料激光制孔技术研究进展[J]. 复合材料学报, 2022, 39(4): 1395-1410. doi: 10.13801/j.cnki.fhclxb.20211115.002
引用本文: 陈根余, 陶能如, 李明全, 等. 碳纤维复合材料激光制孔技术研究进展[J]. 复合材料学报, 2022, 39(4): 1395-1410. doi: 10.13801/j.cnki.fhclxb.20211115.002
CHEN Genyu, TAO Nengru, LI Mingquan, et al. Research progress of laser drilling technology for carbon fiber reinforced composites[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1395-1410. doi: 10.13801/j.cnki.fhclxb.20211115.002
Citation: CHEN Genyu, TAO Nengru, LI Mingquan, et al. Research progress of laser drilling technology for carbon fiber reinforced composites[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1395-1410. doi: 10.13801/j.cnki.fhclxb.20211115.002

碳纤维复合材料激光制孔技术研究进展

doi: 10.13801/j.cnki.fhclxb.20211115.002
基金项目: 汽车车身先进设计制造国家重点实验室重点项目(61975001)
详细信息
    通讯作者:

    陈根余,博士,教授,博士生导师,研究方向为复合材料激光制造技术、高功率与微细激光智能制造技术与装备 E-mail: hdgychen@163.com

  • 中图分类号: TB332

Research progress of laser drilling technology for carbon fiber reinforced composites

  • 摘要: 碳纤维增强树脂基复合材料(CFRP)具有抗疲劳性好、比强度高、耐热性好等优良的热物性能,已在航空、航天等领域得到广泛应用。作为主要的承力构件,CFRP板之间的机械连接所需加工的装配孔数量众多。然而,CFRP作为高硬度且各向异性的难加工材料,传统机械钻孔存在刀具磨损严重、制孔工序多等缺点;相比于机械钻孔,激光“不怕硬”,激光制孔无刀具磨损、经济性好、易于实现自动化控制。首先对CFRP激光制孔加工技术进行了综述,着重分析了CFRP激光制孔常见工艺;其次,剖析了CFRP激光制孔加工常见缺陷及其抑制研究现状;随后,阐述了CFRP激光加工工艺参数对制孔质量及效率的影响;为了阐明CFRP激光制孔材料移除机制,还综述了CFRP激光制孔加工数值仿真和基于高速摄像的加工过程动态观测研究进展;最后,展望了CFRP激光制孔技术的发展趋势。

     

  • 图  1  超短脉冲激光束与材料作用示意图[23]

    Figure  1.  Schematic diagram of the interaction between ultra-short pulse laser beam and materials[23]

    图  2  同轴环制孔工艺示意图

    Figure  2.  Schematic description of coaxial-trepan drilling process

    d—Interval distance; Spp—Interlaced spacing; Rmin—Minimum of radius; Rmax—Maximum of radius

    图  3  双光束制孔工艺:(a)工艺示意图;(b)制孔横截面形貌

    Figure  3.  Schematic diagram of dual-beam laser drilling process: (a) Process diagram; (b) Cross section morphology of drilled hole

    d0, d1—Distance

    图  4  螺旋制孔工艺:(a)激光束旋转原理;(b)加工不同形状孔;(c)旋切头内置光路及相关部件

    Figure  4.  Helical drilling process: (a) Principle of laser beam rotation; (b) Types of drilling holes produced by helical drilling; (c) Internal optical path and related components of rotary laser cutting head

    f—Focal length; a—Eccentric distance

    图  5  “双旋转”制孔工艺示意图

    Figure  5.  Schematic diagram of double-rotation drilling process

    R—Rotation radius; r—Beam radius; v—Rotation speed

    图  6  CFRP激光制孔锥度

    Figure  6.  Taper of CFRP laser drilling

    β1—Hole taper

    图  7  CFRP制孔工艺锥度对比:(a)同轴环制孔工艺;(b)螺旋制孔工艺

    Figure  7.  Hole taper comparison of CFRP for different laser drilling processes: (a) Coaxial-trepan drilling process; (b) Helical drilling process

    Din—Inter size; Dout—Outlet size

    图  8  CFRP双旋转制孔:(a)孔形貌;(b)孔入口尺寸;(c)孔出口尺寸

    Figure  8.  Double-rotation drilling process for CFRP: (a) Hole morphology; (b) Inlet dimension of the hole; (c) Outlet dimension of the hole

    图  9  5轴激光制孔系统

    Figure  9.  System design for 5 axis laser drilling

    α—Deflection angle

    图  10  激光/机械加工CFRP板拉伸断裂界面和力学特性:(a) 机械加工后拉伸失效断面形貌;(b) 激光加工后拉伸失效断面形貌;(c)疲劳裂纹扩展;(d) 样件刚度降解

    Figure  10.  Tensile fracture section and mechanical properties of laser/mechanical drilling of CFRP plates: (a) Morphology of tensile failure section after mechanical processing; (b) Morphology of tensile failure section after laser processing; (c) Fatigue crack propagation; (d) Stiffness degradation of the sample

    σUTS—Ultimate tensile strength

    图  11  激光双旋转制孔和机械钻孔拉伸力学特性对比

    Figure  11.  Comparison of tensile mechanical properties between double rotation drilling and mechanical drilling

    图  12  CFRP激光加工热影响区(HAZ)损伤:(a)损伤定义;(b)孔口HAZ

    Figure  12.  Heat affected zone (HAZ) damage in CFRP laser processing: (a) Definition of damage; (b) HAZ of the hole inlet

    Di—Exposed length; Vs—Cutting velocity

    图  13  CFRP激光制孔加工HAZ:((a)~(b)) 孔入口HAZ尺寸;((c)~(d)) 孔出口HAZ尺寸

    Figure  13.  HAZ of CFRP laser drilling: ((a)-(b)) HAZ on the inlet edge; ((c)-(d)) HAZ on the outlet edge

    图  14  CFRP厚板激光制孔效率

    Figure  14.  Laser drilling efficiency of thick CFRP plate

    图  15  紫外和红外激光加工CFRP材料移除模型

    Figure  15.  Ablation model of CFRP laser processing by UV and IR laser

    图  16  CFRP激光加工数值仿真:(a) 激光与CFRP单层碳纤维作用示意图;(b) 孔周边碳纤维膨胀现象;(c) 不同环间距下CFRP材料移除深度预测

    Figure  16.  Numerical simulation of laser machining CFRP: (a) Schematic of CFRP interaction process on a single carbon fiber layer; (b) Fiber expansion around the processed hole; (c) Predicted material removal depth for various values of spacing distance

    $\ell _{\rm{Proc}} $—Processing depth

    图  17  CFRP激光制孔锥度成型:(a)仿真;(b)实验

    Figure  17.  Taper of CFRP laser drilling process: (a) Simulation; (b) Experiment

    图  18  CFRP激光加工过程羽烟和等离子体观测:(a)羽烟流动;(b)等离子体溅射

    Figure  18.  Observation images of plasma and plume formation during laser processing CFRP: (a) Plume flowing; (b) Jetting of plasma

    XM—Distance of compression wave

    表  1  CFRP激光制孔常见工艺

    Table  1.   Common processes of CFRP laser drilling

    Drilling process Thickness of plate Drilling diameter Taper of drilled hole HAZ of drilled hole Drilling efficiency
    Coaxial-trepan drilling Thin Large Large Large Low
    Dual-beam drilling High Large Large Small Medium
    Helical drilling Medium Small Small Medium high
    Double-rotation drilling Medium Medium Small Medium high
    下载: 导出CSV
  • [1] EMMELMANNA C, PETERSEN M, GOEKE A, et al. Analysis of laser ablation of CFRP by ultra-short laser pulses with short wavelength[J]. Physics Procedia,2011,12:565-571. doi: 10.1016/j.phpro.2011.03.071
    [2] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1) : 1-12.

    DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12(in Chinese).
    [3] 吴志刚. 碳纤维增强环氧树脂基复合材料的研究进展[J]. 天津科技, 2018, 45(7):53-58. doi: 10.3969/j.issn.1006-8945.2018.07.019

    WU Z G. Carbon fiber reinforced epoxy resin composites: A review of research progress[J]. Tianjin Science & Technology,2018,45(7):53-58(in Chinese). doi: 10.3969/j.issn.1006-8945.2018.07.019
    [4] 包建文, 钟翔屿, 张代军, 等. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8):33-48. doi: 10.11868/j.issn.1001-4381.2020.000208

    BAO J W, ZHONG X Y, ZHANG D J, et al. Progress in high strength intermediate modulus carbon fiber and its high toughness resin matrix composites in china[J]. Journal of Materials Engineering,2020,48(8):33-48(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000208
    [5] 陈燕, 葛恩德, 傅玉灿, 等. 碳纤维增强树脂基复合材料制孔技术研究现状与展望[J]. 复合材料学报, 2015, 32(2):301-316.

    CHEN Y, GE E D, FU Y C, et al. Review and prospect of drilling technologies for carbon fiber reinforced polymer[J]. Acta Materiae Compositae Sinica,2015,32(2):301-316(in Chinese).
    [6] 李光友, 倪亭, 郭辉. 轨道交通用碳纤维复合材料的技术进展与应用[J]. 纺织导报, 2020, 7:25-29. doi: 10.3969/j.issn.1003-3025.2020.10.022

    LI G Y, NI T, GUO H. Technical progress and application of carbon fiber composites for rail transit[J]. China Textile Leader,2020,7:25-29(in Chinese). doi: 10.3969/j.issn.1003-3025.2020.10.022
    [7] 孙延. 碳纤维增强复合材料在新能源汽车上的应用形式及进展[J]. 粘接, 2019(9):71-74. doi: 10.3969/j.issn.1001-5922.2019.09.017

    SUN Y. Application forms and progress of carbon fiber reinforced composites in new energy vehicles[J]. Adhesion,2019(9):71-74(in Chinese). doi: 10.3969/j.issn.1001-5922.2019.09.017
    [8] JIA Z, FU R, NIU B, et al. Novel drill structure for damage reduction in drilling CFRP composites[J]. International Journal of Machine Tools and Manufacture,2016,110:55-65. doi: 10.1016/j.ijmachtools.2016.08.006
    [9] TAN C, SU J, ZHU B, et al. Effect of scanning speed on laser joining of carbon fiber reinforced PEEK to titanium alloy[J]. Optics & Laser Technology,2020,129:106273.
    [10] 张厚江, 陈五一, 陈鼎昌, 碳纤维复合材料钻削孔分层缺陷的研究[J]. 中国机械工程, 2003, 14: 1978-1981.

    ZHANG H J, CHEN W Y, CHEN D C. Study on delamination defects in drilling holes of carbon fiber composites[J]. China Mechanical Engineering, 2003, 48 (15): 1978-1983(in Chinese).
    [11] TSAO C C. Thrust force and delamination of core-saw drill during drilling of carbon fiber reinforced plastics (CFRP)[J]. The International Journal of Advanced Manufacturing Technology,2007,37:23-28.
    [12] SHYHA I S, ASPINWALL D K, SOO S L, et al. Drill geometry and operating effects when cutting small diameter holes in CFRP[J]. International Journal of Machine Tools and Manu-facture,2009,49:1008-1014. doi: 10.1016/j.ijmachtools.2009.05.009
    [13] 王奔, 高航, 毕铭智, 等. C/E复合材料螺旋铣削制孔方法抑制缺陷产生的机理[J]. 机械工程学报, 2012, 48(15):173-181. doi: 10.3901/JME.2012.15.173

    WANG B, GAO H, BI M Z, et al. Mechanism of reduction of damage during orbital drilling of C/E composites[J]. Journal of Mechanical Engineering,2012,48(15):173-181(in Chinese). doi: 10.3901/JME.2012.15.173
    [14] 王福吉, 殷俊伟, 贾振元, 等. CFRP复合材料铣削力、温度及表层损伤分析[J]. 机械工程学报, 2018, 3:186-195.

    WANG F J, YIN J W, JIA Z Y, et al. Measurement and analysis of cutting force, temperature and cutting-induced top-layer damage in edge trimming of CFRPs[J]. Journal of Mechanical Engineering,2018,3:186-195(in Chinese).
    [15] 赵文辉, 张伟东, 段振云, 等. 基于分层损伤分析的碳纤维增强树脂复合材料-金属传动轴扭转性能[J]. 复合材料学报, 2021, 38(5):1476-1486.

    ZHAO W H, ZHANG W D, DUAN Z Y, et al. Torsion properties of carbon fiber-metal transmission shaft based on delamination damage analysis[J]. Acta Materiae Compo-sitae Sinica,2021,38(5):1476-1486(in Chinese).
    [16] 张博宇. 铣/钴削CFRP表层损伤抑制关键技术研究[D]. 大连: 大连理工大学, 2020.

    ZHANG B Y. Research on key technolofies for surface damages suppression in edge trimming/drilling of CFRP composites[D]. Dalian: Dalian University of Technology, 2020(in Chinese).
    [17] EL-HOFY M H, EL-HOFY H. Laser beam machining of carbon fiber reinforced composites: A review[J]. The International Journal of Advanced Manufacturing Technology,2018,101:2965-2975.
    [18] REINHART P. Tailored light 2 laser application technology[M]. Berlin: Springer, 2011.
    [19] QI Y, CHEN G, DENG S, et al. Periodic root humps in thick-plate laser welding using steady electromagnetic force[J]. Journal of Materials Processing Technology, 2019, 273: 116247.
    [20] 顾波. 激光加工技术及产业的现状与应用发展趋势[J]. 金属加工(热加工), 2020, 10:37-42.

    GU B. The present status and development trend of laser processing technology and industry[J]. Machinist Metal Forming,2020,10:37-42(in Chinese).
    [21] CHEN X, LOTSHAW W T, ORTIZ A L, et al. Laser drilling of advanced materials: Effects of peak power, pulse format, and wavelength[J]. Journal of Laser Applications,1996,8(5):233-239. doi: 10.2351/1.4745427
    [22] 孙岳, 黄海明, 高锁文. 激光烧蚀机理研究进展[J]. 失效分析与预防, 2008, 3(2):58-63. doi: 10.3969/j.issn.1673-6214.2008.02.012

    SUN Y, HUANG H M, GAO S W. Progress of research in laser ablation mechanism[J]. Failure Analysis and Prevention,2008,3(2):58-63(in Chinese). doi: 10.3969/j.issn.1673-6214.2008.02.012
    [23] 蒋翼. 碳纤维复合材料皮秒激光切割及其与铝合金连接研[D]. 长沙: 湖南大学, 2017.

    JIANG Y. Research on cutting carbon-fiber reinforced plastic with picosecond pulsed laser and its connection with aluminum alloy[D]. Changsha: Hunan University, 2017(in Chinese).
    [24] 周典瑞, 高亮, 霍红宇, 等. 热塑性树脂基复合材料用碳纤维上浆剂研究进展[J]. 复合材料学报. 2020, 37(8): 1785-1795.

    ZHOU D R, GAO L, HUO H Y, et al. Research progress of carbon fiber sizing agents for thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1785-1795(in Chinese).
    [25] WEBER R, HAFNER M, MICHALOWSKI A, et al. Minimum damage in CFRP laser processing[J]. Physics Procedia,2011,12:302-307. doi: 10.1016/j.phpro.2011.03.137
    [26] ROMOLI L, FISCHER F, KLING R. A study on UV laser drilling of PEEK reinforced with carbon fibers[J]. Optics and Lasers in Engineering. 2012, 50(3): 449-457.
    [27] LI Z L, ZHENG H Y, LIM G C. Study on UV laser machining quality of carbon fibre reinforced composites[J]. Compo-sites Part A: Applied Science and Manufacturing,2010,41:1403-1408. doi: 10.1016/j.compositesa.2010.05.017
    [28] DIRK H, MATTHIAS S L, MAX O, et al. Laser cutting of carbon fibre reinforced plastics of high thickness[J]. Materials and Design, 2016, 92 : 742-749.
    [29] TAO N R, CHEN G Y, YU T Y, et al. Dual-beam laser drilling process for thick carbon fiber reinforced plastic compo-sites plates[J]. Journal of Materials Processing Technology, 2020, 281: 116590.
    [30] LI W, ZHANG G, HUANG Y, et al . UV laser high-quality drilling of CFRP plate with a new interlaced scanning mode [J]. Composite Structures , 2021, 273: 114258.
    [31] FORNAROLI C, HOLTKAMP J, GILLNER A. Laser-beam helical drilling of high quality micro holes[J]. Physics Procedia,2013,41:661-669. doi: 10.1016/j.phpro.2013.03.130
    [32] SHIN J, MAZUMDER J. Shallow Angle drilling of inconel 718 using a helical laser drilling technique[J]. Journal of Manufacturing Science and Engineering,2017,139:031004. doi: 10.1115/1.4034718
    [33] KASPAR J, LUFT A, NOLTE S, et al. Laser helical drilling of silicon wafers with ns to fs pulses: Scanning electron microscopy and transmission electron microscopy characterization of drilled through-holes[J]. Journal of Laser Applications,2006,18:85-92. doi: 10.2351/1.2164480
    [34] 叶逸云, 贾少辉, 徐子法, 等. 碳纤维复合材料激光切割制孔工艺研究[J]. 航空制造技术, 2019, 62(19):50-55.

    YE Y Y, JIA S H, XU Z F, et al. Research on hole drilling in carbon fiber reinforced composite by using laser cutting method[J]. Aeronautical Manufacturing Technology,2019,62(19):50-55(in Chinese).
    [35] OUYANG W, JIAO J, XU Z, et al. Experimental study on CFRP drilling with the picosecond laser “double rotation” cutting technique[J]. Optics & Laser Technology, 2021, 142: 107238.
    [36] OH S, LEE I, PARK Y B, et al. Investigation of cut quality in fiber laser cutting of CFRP[J]. Optics& Laser Technology,2019,113:129-140.
    [37] JIANG H, MA C, LI M, et al. Femtosecond laser drilling of cylindrical holes for carbon fiber-reinforced polymer (CFRP) composites[J]. Molecules, 2021, 26: 2953.
    [38] ZHANG Y, SHEN Z, NI X. Modeling and simulation on long pulse laser drilling processing[J]. International Journal of Heat and Mass Transfer,2014,73:429-437. doi: 10.1016/j.ijheatmasstransfer.2014.02.037
    [39] ALWAIDH A, BAKER I, HAY N, et al. High throughput cutting and drilling of carbon fibre reinforced polymer with nanosecond pulsed solid state lasers[C]. San Diego: International Congress on Applications of Lasers & Electro-Optics, 2014: 1208-1214.
    [40] HERRMANN T, STOLZE M, LHUILLIER J. Laser drilling of carbon fiber reinforced plastics (CFRP) by picosecond laser pulses: Comparative study of different drilling tools[J]. International Society for Optics and Photonics,2014,8972:89721.
    [41] SCHLÜTER H, WEBER P. 5-axis scanner for precession drilling[C]. Puchheim: 9th International conference on Photonic Technologies LANE, 2016.
    [42] OLIVEIRA V, SHARMA S P, MOURA M F S F, et al. Surface treatment of CFRP composites using femtosecond laser radiation[J]. Optics and Lasers in Engineering,2017,94:37-43.
    [43] LEONE C, PAPA I, TAGLIAFERRI F, et al. Investigation of CFRP laser milling using a 30W Q-switched Yb: YAG fiber laser: Effect of process parameters on removal mechanisms and HAZ formation[J]. Composites Part A: Applied Science and Manufacturing, 2013, 55: 129-142.
    [44] LI M, GAN G, ZHANG Y, et al. Thermal damage of CFRP laminate in fiber laser cutting process and its impact on the mechanical behavior and strain distribution[J]. Archives of Civil and Mechanical Engineering, 2019, 19(4): 1511-1522.
    [45] KALYANASUNDARAM D, GURURAJA S, PRABHUNE P, et al. Open hole fatigue testing of laser machined MD-CFRPs[J]. Composites Part A: Applied Science and Manufacturing, 2018, 111: 33-41.
    [46] HE F J, SINGH D, KUBHER S, et al. Machining damage in FRPs: Laser versus conventional drilling[J]. Composites Part A: Applied Science and Manufacturing, 2016, 82: 42-52.
    [47] HU J, ZHU D. Experimental study on the picosecond pulsed laser cutting of carbon fiber-reinforced plastics[J]. Journal of Reinforced Plastics and Composites, 2018, 37(15): 993-1003.
    [48] WOLYNSKI A, HERRMANN T, MUCHA P, et al. Laser ablation of CFRP using picosecond laser pulses at different wavelengths from UV to IR[J]. Physics Procedia,2011,12(1):292-301.
    [49] YALUKOVA O, SÁRADY I. Investigation of interaction mechanisms in laser drilling of thermoplastic and thermoset polymers using different wavelengths[J]. Compo-sites Science and Technology,2006,66:1289-1296. doi: 10.1016/j.compscitech.2005.11.002
    [50] JAESCHKE P, STOLBERG K, BASTICK S, et al. Cutting and drilling of carbon fiber reinforced plastics (CFRP) by 70W short pulse nanosecond laser[C]//Spie Lase. High-Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications III. Brussel, 2014.
    [51] 贺龙宇. 基于飞秒激光的CFRP制孔质量研究[D]. 天津: 天津工业大学, 2019: 65-75.

    HE L Y. Research on the drilling quality of CFRP based on femtosecond laser[D]. Tianjin: Tianjin University of Technology, 2019, 65-75 (in Chinese).
    [52] FREITAG C, WIEDENMANN M, NEGEL J P, et al. High-quality processing of CFRP with a 1.1-kW picosecond laser[J]. Applied Physics A,2015,119(4):1237-1243. doi: 10.1007/s00339-015-9159-3
    [53] XU J Y, AN Q L, CHEN M. A comparative evaluation of polycrystalline diamond drills in drilling high-strength T800S/250F CFRP[J]. Composite Structures,2014,117:71-82. doi: 10.1016/j.compstruct.2014.06.034
    [54] PAUL S, KUDRYASHOV S I, LYON K, et al. Nanosecond laser plasma-assisted ultra-deep microdrilling of optically opaque and transparent solids[J]. Journal of Applied Physics,2007,101:043106. doi: 10.1063/1.2434829
    [55] KIM M J, CHEN Z H, MAJUMDAR P. Finite element modeling of the laser cutting process[J]. Computers & Structures, 1993, 49: 231-241.
    [56] SCHULZ W, EPPELT U. The theory of laser materials processing (2th Ed)[M]. Netherlands: Springer, 2009: 170-178.
    [57] SALAMA A, LI L, MATIVENGA P, et al. High-power picosecond laser drilling/machining of carbon fibre-reinforced polymer (CFRP) composites[J]. Applied Physics A,2016,122(2):73-83. doi: 10.1007/s00339-016-9607-8
    [58] TAKAHASHI K, TSUKAMOTO M, MASUNO S, et al. Heat conduction analysis of laser CFRP processing with IR and UV laser light[J]. Composites Part A: Applied Science and Manufacturing, 2016, 84: 114-122.
    [59] SALAMA A, YAN Y, LI L, et al. Understanding the self-limiting effect in picosecond laser single and multiple parallel pass drilling/machining of CFRP composite and mild steel[J]. Materials & Design,2016,107:461-469.
    [60] WAHAB M S, RAHMAN N A, MOHAMED M A S, et al. Optimization of laser cutting parameters on the laminated carbon fibre reinforced plastics (CFRP) composites using DOE technique[J]. Applied Mechanics & Materials,2014,660:60-64.
    [61] JOHANNES S, MICHAEL F Z, MARKUS C. Remote laser cutting of CFRP: Improvements in the cut surface[J]. Physics Procedia,2012,39:161-170.
    [62] STAEHR R, BASTICK S, BLUEMEL S, et al. High precision laser macro drilling of carbon fiber reinforced plastics with a new nanosecond pulsed laser—Optimized toward industrial needs[J]. Journal of Laser Applications,2019,31:022207. doi: 10.2351/1.5096120
    [63] 宋维建, 万瓦级激光切割装备及技术[J]. 金属加工(热加工), 2018, 3: 22-24.

    SONG W J. 10000 W laser cutting equipments and technology[J]. Metal Processing (Hot-work), 2018, 3: 22-24(in Chinese).
    [64] CHENG C F, TSUI Y C, CLYNE T W. Application of a three-dimensional heat flow model to treat laser drilling of carbon fibre composites[J]. Acta Materialia,1998,46(12):4273-4285. doi: 10.1016/S1359-6454(98)00090-1
    [65] NEGARESTANI R, SUNDAR M, SHEIKH M A, et al. Numerical simulation of laser machining of carbon-fibre-reinforced composites[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manu-facture,2010,224(7):1017-1027. doi: 10.1243/09544054JEM1662
    [66] OHKUBO T, SATO Y, MATSUNAGA E I, et al. Three-dimensional numerical simulation during laser processing of CFRP[J]. Applied Surface Science,2017,417:104-107. doi: 10.1016/j.apsusc.2017.02.249
    [67] WU F F, PILKINGTON R D. Model predicting the microhole profiles of laser drilling processes in carbon fiber composite[J]. International Society for Optics and Photonics,2000,3933:445-456.
    [68] WANG L, ZHOU Z, LIU Y C, et al. Interaction between pulsed infrared laser and carbon fiber reinforced polymer composite laminates[J]. International Conference Proceedings of SPIE,2016,10152:101520X.1-101520X.6.
    [69] FAAS S, FREITAG C, BOLEY S, et al. Flow speed of the ablation vapors generated during laser drilling of CFRP with a continuous-wave laser beam[J]. Applied Physics A,2017,123(3):156. doi: 10.1007/s00339-017-0781-0
    [70] BLUEMEL S, KUKLIK J, STAEHR R, et al. Time resolved analysis of nanosecond pulsed laser processing of carbon fiber reinforced plastics[J]. Journal of Laser Applications,2017,29(2):022406. doi: 10.2351/1.4983242
    [71] ACQUAVIVA S, GIORGI M L D. Fast photography of XeCl laser-induced plasma of graphite in vacuum and in nitrogen atmosphere[J]. Journal of Physics B Atomic Molecular & Optical Physics,2003,36:247-260.
    [72] WIEDENMANN M, HAIST C, FREITAG C, et al. Ablation dynamics and shock wave expansion during laser processing of CFRP with ultrashort laser pulses[J]. Proceedings of Spie the International Society for Optical,2014,8967:2039468.
    [73] 汪建新, 吴耀文, 张广义, 等. 碳纤维增强复合材料水导激光切割试验研究[J]. 中国机械工程, 2021, 32(13): 1608-1616.

    WANG J X, WU Y W, ZHANG G Y, et al. The experimental research on carbon fiber reinforced plastic cutting by using waterjet guided laser processing[J]. China Mechanical Engineering, 2021, 32(13): 9(in Chinese).
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  2361
  • HTML全文浏览量:  868
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-17
  • 修回日期:  2021-10-15
  • 录用日期:  2021-11-10
  • 网络出版日期:  2021-11-16
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回