留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光熔化沉积60wt%不同粒径WC复合NiCu合金耐磨性及电化学腐蚀性能

方艳 贾晓慧 雷剑波 张家奇

方艳, 贾晓慧, 雷剑波, 等. 激光熔化沉积60wt%不同粒径WC复合NiCu合金耐磨性及电化学腐蚀性能[J]. 复合材料学报, 2022, 39(7): 3498-3509. doi: 10.13801/j.cnki.fhclxb.20210915.001
引用本文: 方艳, 贾晓慧, 雷剑波, 等. 激光熔化沉积60wt%不同粒径WC复合NiCu合金耐磨性及电化学腐蚀性能[J]. 复合材料学报, 2022, 39(7): 3498-3509. doi: 10.13801/j.cnki.fhclxb.20210915.001
FANG Yan, JIA Xiaohui, LEI Jianbo, et al. Wear resistance and electrochemical corrosion properties of 60wt% coarse and fine WC composite NiCu alloy by laser melting deposition[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3498-3509. doi: 10.13801/j.cnki.fhclxb.20210915.001
Citation: FANG Yan, JIA Xiaohui, LEI Jianbo, et al. Wear resistance and electrochemical corrosion properties of 60wt% coarse and fine WC composite NiCu alloy by laser melting deposition[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3498-3509. doi: 10.13801/j.cnki.fhclxb.20210915.001

激光熔化沉积60wt%不同粒径WC复合NiCu合金耐磨性及电化学腐蚀性能

doi: 10.13801/j.cnki.fhclxb.20210915.001
基金项目: 天津市教委项目(2018KJ206)
详细信息
    通讯作者:

    张家奇,硕士,工艺部部长,研究方向为激光制造工艺及理论  E-mail:zhangjiaqi1933@163.com

  • 中图分类号: TG148

Wear resistance and electrochemical corrosion properties of 60wt% coarse and fine WC composite NiCu alloy by laser melting deposition

  • 摘要: 通过向镍铜(NiCu)合金中添加不同粒径的WC研究对涂层的微观组织、显微硬度、耐磨性和电化学腐蚀性能的影响规律,以期解决NiCu合金表面硬度较低、耐磨性较差的问题。采用激光熔化沉积技术在A3钢板表面制备了NiCu合金涂层、60wt%粗粒径WC/NiCu复合涂层和60wt%细粒径WC/NiCu复合涂层,采用扫描电子显微镜、X射线光谱仪、光学显微镜表征其样品表面形貌,用显微硬度测试计和磨损试验机测定了熔覆层的显微硬度和耐磨性能,用电化学工作站分别对NiCu合金涂层和复合涂层的电化学腐蚀性能进行测试和分析。在合适的工艺参数下,三种涂层均与基体形成了良好的冶金结合,无明显的裂纹气孔等缺陷。熔覆层的组织以等轴晶和柱状晶为主,WC的加入使晶粒尺寸明显变小。在相同工艺参数下,加入60wt%粗粒径WC、60wt% 细粒径WC的涂层硬度分别提高了62.1%、81.1%,磨损量分别降低了84.8%、94.3%,磨损机制以磨粒磨损为主。在3.5wt%NaCl溶液中,复合涂层的自腐蚀电流密度与NiCu合金涂层相比分别降低了61%和49%。WC的加入显著提高了NiCu合金涂层的性能,细粒径WC对显微硬度、耐磨性提升效果更加明显,粗粒径WC对电化学腐蚀性能提升明显。

     

  • 图  1  实验所用粉末形貌:(a) NiCu;(b)粗粒径WC粉;(c)细粒径WC粉

    Figure  1.  Morphologies of the powder used in the experiment: (a) NiCu; (b) Coarse WC powder; (c) Fine WC powder

    图  2  电化学测试原理图

    Figure  2.  Schematic diagram of electrochemical test

    图  3  三种试样的XRD衍射图谱

    Figure  3.  XRD diffraction patterns of the three samples

    图  4  激光熔化沉积三种涂层的宏观表面

    Figure  4.  Macroscopic surface of three kinds of coatings by laser melting deposition

    图  5  激光熔化沉积三种涂层的横截面

    Figure  5.  Cross-sections of three types of coatings by laser melting deposition

    图  6  三种涂层的微观组织图:(a) NiCu上部;(b) NiCu下部;(c) Coarse WC/NiCu下部;(d) Fine WC/NiCu下部

    Figure  6.  Microstructures of three coatings: (a) NiCu upper; (b) NiCu bottom; (c) Coarse WC/NiCu bottom; (d) Fine WC/NiCu bottom

    图  7  60wt%粗粒径WC/NiCu复合涂层WC周围元素分布:(a) 显微组织;(b) Ni;(c) C;(d) Cu;(e) W

    Figure  7.  Element distribution around WC in 60wt% coarse WC/NiCu composite coating: (a) Microstructure; (b) Ni; (c) C; (d) Cu; (e) W

    图  8  60wt%细粒径WC/NiCu复合涂层WC周围元素分布:(a) 显微组织;(b) Ni;(c) C;(d) Cu;(e) W

    Figure  8.  Element distribution around WC in 60wt% fine WC/NiCu composite coating: (a) Microstructure; (b) Ni; (c) C; (d) Cu; (e) W

    图  9  三种涂层的显微硬度对比

    Figure  9.  Comparison of the microhardness of three coatings

    图  10  三种涂层摩擦系数曲线

    Figure  10.  Curves of friction coefficient of three coatings

    图  11  三种涂层的磨损量

    Figure  11.  Wear loss of three kinds of coatings

    图  12  三种涂层熔覆层磨损表面形貌图:(a) NiCu低倍;(b) NiCu高倍;(c) Coarse WC/NiCu低倍;(d) Coarse WC/NiCu高倍;(e) Fine WC/NiCu低倍;(f) Fine WC/NiCu高倍

    Figure  12.  Morphologies of the worn surface of the cladding layer of three coatings: (a) NiCu low magnification; (b) NiCu high magnification; (c) Coarse WC/NiCu low magnification; (d) Coarse WC/NiCu high magnification; (e) Fine WC/NiCu low magnification; (f) Fine WC/NiCu high magnification

    图  13  三种涂层磨屑形貌图:(a) NiCu低倍;(b) NiCu高倍;(c) Coarse WC/NiCu低倍;(d) Coarse WC/NiCu高倍;(e) Fine WC/NiCu低倍;(f) Fine WC/NiCu高倍

    Figure  13.  Wear debris morphologies of the three coatings: (a) NiCu low magnification; (b) NiCu high magnification; (c) Coarse WC/NiCu low magnification; (d) Coarse WC/NiCu high magnification; (e) Fine WC/NiCu low magnification; (f) Fine WC/NiCu high magnification

    图  14  三种涂层试样在3.5wt%NaCl溶液中的动电位极化曲线

    Figure  14.  Potential polarization curves of three coating samples in 3.5wt%NaCl solution

    图  15  三种涂层试样在3.5wt%NaCl溶液中的交流阻抗谱:(a) 奈奎斯特图;((b)、(c)) 波特图

    Figure  15.  AC impedance spectra of three coating samples in 3.5wt%NaCl solution: (a) Nyquist plot; ((b), (c)) Bode plot

    图  16  三种涂层试样在3.5wt%NaCl溶液中电化学腐蚀过程的等效电路图:(a) NiCu合金;(b) 粗粒径细粒径WC

    Figure  16.  Equivalent circuit diagram of the electrochemical corrosion process of three coating samples in 3.5wt%NaCl solution: (a) NiCu alloy; (b) Coarse and fine WC

    RE—Reference electrode; SCE—Saturated calomel electrode; Rs—Solution resistance; Rct—Charge transfer resistor; Rf—Passivation film resistors; CPE1—Constant phase element; W—Weber impedance element; C—Capacitance; WE—Working electrode

    图  17  三种涂层试样在3.5wt%NaCl溶液中电化学腐蚀后的表面形貌图:(a) NiCu合金;(b) 粗粒径WC;(c)细粒径WC;(d)~(f))分别为图(a)~(c)放大区域

    Figure  17.  Morphologies of the specimens’ surface after electrochemical corrosion in 3.5wt%NaCl: (a) NiCu; (b) Coarse WC; (c) Fine WC; (d)-(f) Enlarged areas of (a)-(c), respectively

    表  1  NiCu粉末的化学成分

    Table  1.   Chemical composition of NiCu powder wt%

    CBSiCuNi
    0.03 1.1 2.0 20 Bal.
    Notes: Bal.—Balance.
    下载: 导出CSV

    表  2  WC粉末的化学成分

    Table  2.   Chemical composition of WC powder wt%

    WCrCFeVTi+Ta+NbCo+Ni+Mo
    95-960.0233.950.20.001<0.2<0.2
    下载: 导出CSV

    表  3  三种涂层试样极化曲线的腐蚀参数

    Table  3.   Corrosion parameters of polarization curve of three coating samples

    icorr/(A·cm−2)Ecorr(vs SCE)/VRp/(Ω·cm−2)
    NiCu 6.92×10−6 −0.916 4540
    Coarse WC/NiCu 2.72×10−6 −0.819 12185
    Fine WC/NiCu 3.52×10−6 −0.822 9541
    Notes: icorr—Self-corrosion current density; Ecorr—Self-corrosion potential; Rp—Polarization resistance.
    下载: 导出CSV
  • [1] 李俐群, 曲劲宇, 王宪. 激光熔化沉积AlSi10Mg成形特性及力学性能[J]. 表面技术, 2019, 48(6):332-337.

    LI Liqun, QU Jinyu, WANG Xian. Forming characteristics and mechanical properties of AlSi10Mg deposited by laser melting[J]. Surface Technology,2019,48(6):332-337(in Chinese).
    [2] 刘帅, 王阳, 刘常升. 激光熔化沉积技术在制备梯度功能材料中的应用[J]. 航空制造技术, 2018, 61(17):47-56.

    LIU Shuai, WANG Yang, LIU Changsheng. Application of laser melting deposition technology in the preparation of functionally gradient materials[J]. Aeronautical Manufacturing Technology,2018,61(17):47-56(in Chinese).
    [3] 何波, 雷涛, 孙长青, 等. 激光沉积TC4/TC11梯度材料组织与疲劳性能研究[J]. 稀有金属材料与工程, 2019, 48(9):3048-3054.

    HE Bo, LEI Tao, SUN Changqing, et al. Microstructure and fatigue properties of TC4/TC11 gradient materials by laser deposition[J]. Rare Metal Materials and Engineering,2019,48(9):3048-3054(in Chinese).
    [4] 庄其仁, 黄立民, 张文珍. 稀土陶瓷对激光涂敷蒙乃尔合金涂层组织性能的影响[J]. 光电子·激光, 2000(3):309-312. doi: 10.3321/j.issn:1005-0086.2000.03.027

    ZHUANG Qiren, HUANG Limin, ZHANG Wenzhen. Effect of rare earth ceramics on the microstructure and properties of laser-coated monel alloy coating[J]. Journal of Optoelectronics Laser,2000(3):309-312(in Chinese). doi: 10.3321/j.issn:1005-0086.2000.03.027
    [5] AL-SAADI S, RAMAN R K S, ANISUR M R, et al. Graphene coating on a nickel-copper alloy (Monel 400) for microbial corrosion resistance: Electrochemical and surface characterizations[J]. Corrosion Science,2021,182:109299. doi: 10.1016/j.corsci.2021.109299
    [6] SUNDARAM M, KAMARAJ A B, LILLIE G. Experimental study of localized electrochemical deposition of Ni-Cu alloy using a moving anode[J]. Procedia CIRP,2018,68:227-231. doi: 10.1016/j.procir.2017.12.053
    [7] 李刚, 熊梓连, 曾永浩, 等. 激光增材制造WC增强铁基复合材料组织结构及性能研究[J]. 表面技术, 2020, 49(4):271-277.

    LI Gang, XIONG Zilian, ZENG Yonghao, et al. Research on microstructure and properties of WC reinforced iron-based composites by laser additive manufacturing[J]. Surface Technology,2020,49(4):271-277(in Chinese).
    [8] HONG C, GU D D, DAI D H, et al. Laser additive manufacturing of ultrafine TiC particle reinforced Inconel 625 based composite parts: Tailored microstructures and enhanced performance[J]. Materials Science and Engineering: A,2015,635:118-128.
    [9] KANG N, MA W, LI F, et al. Microstructure and wear properties of selective laser melted WC reinforced 18Ni-300 steel matrix composite[J]. Vacuum,2018,154:69-74. doi: 10.1016/j.vacuum.2018.04.044
    [10] FARAHMAND P, LIU S, ZHANG Z, et al. Laser cladding assisted by induction heating of Ni–WC composite enhanced by nano-WC and La2O3[J]. Ceramics International,2014,40(10):15421-15438. doi: 10.1016/j.ceramint.2014.06.097
    [11] SADHU A, CHOUDHARY A, SARKAR S, et al. A study on the influence of substrate pre-heating on mitigation of cracks in direct metal laser deposition of NiCrSiBC-60% WC ceramic coating on Inconel 718[J]. Surface and Coatings Technology,2020,389:125646.
    [12] 杨胶溪, 张健全, 常万庆, 等. 激光熔覆WC/Ni基复合涂层高温滑动干摩擦磨损性能[J]. 材料工程, 2016, 44(6):110-116. doi: 10.11868/j.issn.1001-4381.2016.06.017

    YANG Jiaoxi, ZHANG Jianquan, CHANG Wanquan, et al. High temperature dry sliding friction and wear performance of laser cladding WC/Ni composite coating[J]. Journal of Materials Engineering,2016,44(6):110-116(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.06.017
    [13] XU J S, ZHANG X C, XUAN F Z, et al. Tensile properties and fracture behavior of laser cladded WC/Ni composite coatings with different contents of WC particle studied by in-situ tensile testing[J]. Materials Science and Engineering: A,2013,560:744-751. doi: 10.1016/j.msea.2012.10.028
    [14] HAO E, ZHAO X, AN Y, et al. WC-Co reinforced NiCoCrAlYTa composite coating: Effect of the proportion on microstructure and tribological properties[J]. International Journal of Refractory Metals and Hard Materials,2019,84:104978. doi: 10.1016/j.ijrmhm.2019.104978
    [15] BUTT M Z, ALI D, AFTAB M, et al. Nitrogen ions implantation in W-based quad alloy: Structure, electrical resistivity, surface roughness and vickers hardness as a function of ion dose[J]. Metals and Materials International,2020:1-17.
    [16] HUANG Y, ZENG X, HU Q, et al. Microstructure and interface interaction in laser induction hybrid cladding of Ni-based coating[J]. Applied Surface Science,2009,255(7):3940-3945. doi: 10.1016/j.apsusc.2008.10.050
    [17] 曹俊, 卢海飞, 鲁金忠, 等. WC对激光熔覆热作模具的组织和磨损性能的影响[J]. 中国激光, 2019, 46(7):68-74.

    CAO Jun, LU Haifei, LU Jinzhong, et al. Effect of tungsten carbide particles on microstructure and wear resistance of hot working die prepared via laser cladding[J]. Chinese Journal of Lasers,2019,46(7):68-74(in Chinese).
    [18] FENG K, CHEN Y, DENG P, et al. Improved high-temperature hardness and wear resistance of Inconel 625 coatings fabricated by laser cladding[J]. Journal of Materials Processing Technology,2017,243:82-91. doi: 10.1016/j.jmatprotec.2016.12.001
    [19] 赵宇, 宋振明, 金剑波, 等. 激光选区熔化成形Ti-5%TiN复合材料在Hank溶液中的电化学腐蚀性能[J]. 中国激光, 2019, 46(9):112-120. doi: 10.3788/CJL201946.0902005

    ZHAO Yu, SONG Zhenming, JIN Jianbo, et al. Electrochemical corrosion properties of Ti-5wt%TiN composites by selective laser melting in Hank's solution[J]. Chinese Journal of Lasers,2019,46(9):112-120(in Chinese). doi: 10.3788/CJL201946.0902005
    [20] HU P, SONG R, LI X, et al. Influence of concentrations of chloride ions on electrochemical corrosion behavior of titanium-zirconium-molybdenum alloy[J]. Journal of Alloys and Compounds,2017,708:367-372. doi: 10.1016/j.jallcom.2017.03.025
    [21] 冯晓甜, 顾宏, 周圣丰, 等. 送粉式激光增材制造 TC4 钛合金熔覆层组织及电化学腐蚀行为的研究[J]. 中国激光, 2019, 46(3):44-53. doi: 10.3788/CJL201946.0302003

    FENG Xiaotian, GU Hong, ZHOU Shengfeng, et al. Microstructure and electrochemical corrosion behavior of TC4 titanium alloy cladding layer prepared with powder feeding laser additive manufacturing[J]. Chinese Journal of Laser,2019,46(3):44-53(in Chinese). doi: 10.3788/CJL201946.0302003
    [22] SHI Y, COLLINS L, BALKE N, et al. In-situ electrochemical-AFM study of localized corrosion of AlxCoCrFeNi high-entropy alloys in chloride solution[J]. Applied Surface Science,2018,439:533-544. doi: 10.1016/j.apsusc.2018.01.047
    [23] SONG X, LEI J, GU Z, et al. Boosting wear properties of Inconel 718 superalloy by uniform dispersing graphene nanoplatelets through laser melting deposition[J]. Journal of Alloys and Compounds,2020,834:155086.
    [24] 黄新波, 贾建援, 林化春. 钴基合金-碳化钨复合涂层的耐蚀性能[J]. 机械工程材料, 2003, 27(11):49-51. doi: 10.3969/j.issn.1000-3738.2003.11.016

    HUANG Xinbo, JIA Jianyuan, LIN Huachun. Corrosion resistance of Co based carbide composite coating[J]. Materials for Mechanical Engineering,2003,27(11):49-51(in Chinese). doi: 10.3969/j.issn.1000-3738.2003.11.016
    [25] YANG X, LI X, YANG Q, et al. Effects of WC on microstructure and corrosion resistance of directional structure Ni60 coatings[J]. Surface and Coatings Technology,2020,385:125359. doi: 10.1016/j.surfcoat.2020.125359
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  1027
  • HTML全文浏览量:  520
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-06
  • 修回日期:  2021-08-16
  • 录用日期:  2021-08-24
  • 网络出版日期:  2021-09-16
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回