留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铝合金/碳纤维混合前纵梁的轴向冲击吸能特性

王振 朱国华 吴永强 宋凯

王振, 朱国华, 吴永强, 等. 铝合金/碳纤维混合前纵梁的轴向冲击吸能特性[J]. 复合材料学报, 2022, 39(10): 5020-5031. doi: 10.13801/j.cnki.fhclxb.20210920.001
引用本文: 王振, 朱国华, 吴永强, 等. 铝合金/碳纤维混合前纵梁的轴向冲击吸能特性[J]. 复合材料学报, 2022, 39(10): 5020-5031. doi: 10.13801/j.cnki.fhclxb.20210920.001
WANG Zhen, ZHU Guohua, WU Yongqiang, et al. Axial impact energy absorption characteristics of the aluminum/ carbon fiber reinforced plastic hybrid front rail[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 5020-5031. doi: 10.13801/j.cnki.fhclxb.20210920.001
Citation: WANG Zhen, ZHU Guohua, WU Yongqiang, et al. Axial impact energy absorption characteristics of the aluminum/ carbon fiber reinforced plastic hybrid front rail[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 5020-5031. doi: 10.13801/j.cnki.fhclxb.20210920.001

铝合金/碳纤维混合前纵梁的轴向冲击吸能特性

doi: 10.13801/j.cnki.fhclxb.20210920.001
基金项目: 国家自然科学基金 (51905042);陕西省自然科学基金 (2020JQ-368);长安大学中央高校基础研究基金 (300102222107);湖南省研究生创新项目(CX20190281)
详细信息
    通讯作者:

    王振,博士,讲师,研究方向为汽车轻量化  E-mail:zhenwang_chd@chd.edu.cn

  • 中图分类号: TB333

Axial impact energy absorption characteristics of the aluminum/ carbon fiber reinforced plastic hybrid front rail

  • 摘要: 为了揭示铝(Al)/碳纤维增强复合材料(CFRP)混合纵梁的吸能机制并提高其抗冲击性能,首先开展了空铝梁及内嵌碳纤维层合板的Al/CFRP混合纵梁动态轴向冲击实验,实验结果表明,相比于单一铝梁,Al/CFRP混合前纵梁的能量吸收$ {W_{\text{e}}} $和比吸能$ {W_{\text{s}}} $分别提高46.1%和17.5%。接着,采用MAT54材料模型,在LS-DYNA商用有限元软件中建立相应的有限元模型(FEM),并通过实验数据验证了模型的准确性,揭示了混合结构的能量提升机制及碳板的损伤模式,结果表明混合梁中铝梁和碳板的能量吸收分别比单一铝梁和碳板提高了30.7%和43.4%,混合梁的耗散能比单一组分的摩擦吸能之和提高了217.8%;利用理论模型预测了混合纵梁中铝梁、交互效应及整体的平均压溃反力$ {P_{\text{c}}} $,预测结果与仿真结果及实验结果均吻合较好。最后用有限元手段研究了铝梁壁厚、碳板厚度及碳板铺层角度对Al/CFRP混合结构的耐撞性影响,发现混合梁的能量吸收和峰值载荷随着铝梁厚度及碳板厚度的增加而提高。

     

  • 图  1  Al/碳纤维增强复合材料(CFRP)混合梁几何构型

    Figure  1.  Geometry configuration of Al/carbon fiber reinforced plastic (CFRP) hybrid rail

    图  2  Al/CFRP混合梁冲击实验的落锤设备:(a)实验设备;(b)示意图

    Figure  2.  General scheme of drop tower equipment for impact tests of Al/CFRP hybrid rail: (a) Test equipment; (b) Diagrammatic sketch

    图  3  铝合金工程应力-应变曲线

    Figure  3.  Engineering stress-strain curve of aluminum

    图  4  Al/CFRP混合梁及其组分的有限元模型

    Figure  4.  Finite element models of Al/CFRP hybrid rail and single components

    图  5  铝梁的实验与仿真结果:(a)载荷-位移曲线;(b)冲击过程;(c)压溃后的铝梁正视图;(d)压溃后铝梁剖面图

    Figure  5.  Comparison between numerical and experimental results of aluminum rail: (a) Force-displacement curves; (b) Impacting process; (c) Front view of Al rail after impacting; (d) Sectional view of Al rail after impacting

    图  6  Al/CFRP混合梁的实验与仿真结果对比:(a)载荷-位移曲线; (b)冲击过程;(c)压溃后的混合纵梁正视图;(d)混合梁剖面图

    Figure  6.  Comparison between numerical and experimental results of Al/CFRP hybrid rail: (a) Force-displacement curves; (b) Impacting process; (c) Front view of hybrid rail after impacting; (d) Sectional view of hybrid rail after impacting

    图  7  铝梁的应力水平对比:(a) Al/CFRP混合纵梁中的铝梁;(b)单一铝梁

    Figure  7.  Comparison of stress levels of aluminum rails: (a) Al rail in Al/CFRP hybrid rail; (b) Single Al rail

    图  8  碳板的失效模式对比

    Figure  8.  Comparison of failure modes of CFRP plates

    EFT—Tensile failure along fiber yarn; EFC—Compressive failure along fiber yarn; EMT—Tensile failure along matrix; EMC—Compressive failure along matrix

    图  9  Al/CFRP混合结构及其不同组分的载荷-位移曲线对比

    Figure  9.  Comparison of force-displacement curves between Al/CFRP hybrid structures and its different counterparts

    图  10  Al/CFRP混合结构及其不同组分的能量吸收对比

    Figure  10.  Comparison of energy absorption between Al/CFRP hybrid structures and its different counterparts

    图  11  具有不同铝梁壁厚TAl的Al/CFRP混合纵梁的变形模式对比

    Figure  11.  Comparison of deformation patterns of Al/CFRP hybrid rail with different Al rail thicknesses TAl

    图  12  具有不同铝梁壁厚的Al/CFRP混合纵梁的载荷-位移曲线对比

    Figure  12.  Comparison of force-displacement curves of Al/CFRP hybrid tubes with different Al wall thicknesses

    图  13  具有不同铝梁壁厚的Al/CFRP混合纵梁的能量吸收效力对比

    Figure  13.  Comparison of energy absorption capacity of Al/CFRP hybrid rail with different Al rail thicknesses

    图  14  具有不同碳板厚度TCF的Al/CFRP混合纵梁的变形模式对比

    Figure  14.  Comparison of deformation patterns of Al/CFRP hybrid rail with different CFRP laminate thicknesses TCF

    图  15  具有不同碳板厚度的Al/CFRP混合纵梁的载荷-位移曲线对比

    Figure  15.  Comparison of force-displacement curves of Al/CFRP hybrid rail with different CFRP laminate thicknesses

    图  16  具有不同碳板厚度的Al/CFRP混合纵梁的能量吸收效力对比

    Figure  16.  Comparison of energy absorption capacity of Al/CFRP hybrid rail with different CFRP laminate thicknesses

    图  17  具有不同碳板铺放角度的Al/CFRP混合纵梁的变形模式对比

    Figure  17.  Comparison of deformation patterns of Al/CFRP hybrid rail with different CFRP stacking sequences

    图  18  不同碳板铺放角度的Al/CFRP混合纵梁的载荷-位移曲线对比

    Figure  18.  Comparison of force-displacement curves of Al/CFRP hybrid rail with different CFRP stacking sequences

    图  19  不同碳板铺放角度的Al/CFRP混合纵梁的能量吸收效力对比

    Figure  19.  Comparison of energy absorption capacity of Al/CFRP hybrid rail with different CFRP stacking sequences

    表  1  CFRP层合板(G803-5224)的性能参数

    Table  1.   Material property parameters of the CFRP laminate (G803-5224)

    Material propertiesValues
    Density $ \rho $ 1.5 g/cm3
    Young’s modulus along x direction $ {E_1} $ 61 GPa
    Young’s modulus along yz direction $ {E_2} $ 58 GPa
    In-plane shear modulus $ {G_1}{\text{ = }}{G_2} $ 3.4 GPa
    Poisson's ratio $\nu$ 0.056
    Tensile strength along x direction $ {X_{\rm{T}} }$ 642 MPa
    Tensile strength along y direction $ {Y_{\rm{T}}} $ 581 MPa
    In-plane shear strength $ S $ 87 MPa
    Failure parameter of tension DFAILT 0.013
    Failure parameter of compression DFAILC 0.014
    Softening factor SOFT 0.9
    Inter-laminar normal strength XNFLS 38.2 MPa
    Inter-laminar shear strength XSFLS 72.2 MPa
    下载: 导出CSV

    表  2  铝梁与Al/CFRP混合梁实验结果与数值模拟结果对比

    Table  2.   Comparison between experimental and numerical results of aluminum rail and Al/CFRP hybrid rail

    Sample Results$ {W_{\text{e}}} $/kJ$ {P_{\text{e}}} $/kN$ {P_{\text{c}}} $/kN$ {W_{\text{s}}} $/(J·g−1)
    AlExperiment 5.42 68.86 22.6 8.42
    Simulation 5.90 70.10 24.6 9.16
    Error 8.85% 1.80% 8.85% 8.79%
    Al/CFRPExperiment 7.92 78.45 33.0 9.90
    Simulation 7.16 77.87 29.8 8.98
    Error 9.60% 0.74% 9.70% 9.29%
    Notes: We—Energy absorption; Pc—Mean crushing force; Pe—Peak crushing force; Ws—Special energy absorption.
    下载: 导出CSV

    表  3  Al/CFRP混合梁实验结果与理论预测结果对比

    Table  3.   Comparison between experimental and theoretical results of Al/CFRP hybrid rail

    Results$ {W_{\text{e}}} $/kJ$ {P_{\text{c}}} $/kN$ {W_{\text{s}}} $/(J·g−1)
    Experiment 7.92 33.00 9.90
    Theory 8.72 36.35 10.91
    下载: 导出CSV

    表  4  Al/CFRP混合梁仿真结果与理论预测结果对比

    Table  4.   Comparison between simulation and theoretical results of Al/CFRP hybrid rail

    Results$ {\overline {{P_{\text{c}}}} _{{\text{Hybrid}}}} $/kN$ {\overline {{P_{\text{c}}}} _{{\text{Al}}}} $/kN$ {\overline {{P_{\text{c}}}} _{{\text{IE}}}} $/kN
    Simulation 29.80 26.43 8.22
    Theory 36.35 27.56 8.79
    Notes: $ {\overline {{P_{\text{c}}}} _{{\text{Hybrid}}}} $—Mean crushing force of Al/CFRP hybrid rail; $ {\overline {{P_{\text{c}}}} _{{\text{Al}}}} $—Mean crushing force of Al; $ {\overline {{P_{\text{c}}}} _{{\text{IE}}}} $—Mean crushing force of interactive effect.
    下载: 导出CSV

    表  5  不同混合结构的耐撞性指标汇总

    Table  5.   Summaries of crashworthiness indicators of different hybrid structures

    SpecimensDescription$ {W_{\text{e}}} $/kJ$ {P_{\text{e}}} $/kN$ {P_{\text{c}}} $/kN$ {W_{\text{s}}} $/(J·g−1)
    H-TAl−1TAl=1.25 mm3.3043.313.755.89
    H-TAl−2TAl=1.50 mm3.8554.016.046.03
    H-TAl−3TAl=1.75 mm5.9466.424.758.25
    H-TAl−4TAl=2.00 mm7.1877.929.928.97
    H-TAl−5TAl=2.25 mm8.1990.234.139.28
    H-TAl−6TAl=2.50 mm9.84102.041.0010.23
    H-TCF−1TCF=1.00 mm6.6075.827.508.82
    H-TCF−2TCF=1.25 mm6.8376.628.468.83
    H-TCF−3TCF=1.50 mm7.1877.929.928.97
    H-TCF−4TCF=1.75 mm7.4479.229.929.00
    H-TCF−5TCF=2.00 mm8.0079.333.339.39
    H-TCF−6TCF=2.25 mm8.6684.636.089.86
    H-TCF−ACF:(+15°/−75°)67.1878.129.928.97
    H-TCF−BCF:(+30°/−60°)67.1578.129.798.94
    H-TCF−CCF:(+45°/−45°)66.9375.528.888.66
    H-TCF−DCF:(+60°/−30°)66.7777.728.218.46
    H-TCF−ECF:(+75°/−15°)66.8577.028.548.56
    H-TCF−FCF:(90°/0°)66.8376.128.468.53
    Notes: H—Hybrid; The number 1, 2, 3, 4, 5, 6 as well as letter A, B, C, D, E, F—Different samples.
    下载: 导出CSV
  • [1] 沈勇, 柯俊, 吴震宇. 不同编织角碳纤维增强聚合物复合材料-Al方管的吸能特性[J]. 复合材料学报, 2020, 37(3):591-600. doi: 10.13801/j.cnki.fhclxb.20190528.003

    SHEN Yong, KE Jun, WU Zhenyu. Energy-absorbing characteristics of carbon fiber reinforced polymer composite-Al square tubes[J]. Acta Materiae Compositae Sinica,2020,37(3):591-600(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190528.003
    [2] 刘腾飞, 田小永, 朱伟军, 等. 连续碳纤维增强聚乳酸复合材料3D打印及回收再利用机制与性能[J]. 机械工程学报, 2019, 55(7):128-134. doi: 10.3901/JME.2019.07.128

    LIU Tengfei, TIAN Xiaoyong, ZHU Weijun, et al. Mechanism and performance of 3D printing and recycling for continuous carbon fiber reinforced PLA composites[J]. Journal of Mechanical Engineering,2019,55(7):128-134(in Chinese). doi: 10.3901/JME.2019.07.128
    [3] 洪武, 徐迎, 金丰年, 等. 薄壁圆锥管轴向压缩吸能特性研究[J]. 振动与冲击, 2015, 34(5):88-94. doi: 10.13465/j.cnki.jvs.2015.05.016

    HONG Wu, XU Ying, JIN Fengnian, et al. Energy absorbing characteristics of tapered circular tubes under axial compression[J]. Journal of Vibration and Shock,2015,34(5):88-94(in Chinese). doi: 10.13465/j.cnki.jvs.2015.05.016
    [4] 刘强, 马小康, 宗志坚. 斜纹机织碳纤维/环氧树脂复合材料性能及其在电动汽车轻量化设计中的应用[J]. 复合材料学报, 2011, 28(5):83-88. doi: 10.13801/j.cnki.fhclxb.2011.05.024

    LIU Qing, MA Xiaokang, ZONG Zhijian. Properties of twill-weave carbon fabric/epoxy composites and its application on light-weight design for electric vehicles[J]. Acta Materiae Compositae Sinica,2011,28(5):83-88(in Chinese). doi: 10.13801/j.cnki.fhclxb.2011.05.024
    [5] 朱国华, 成艾国, 王振, 等. 电动车轻量化复合材料车身骨架多尺度分析[J]. 机械工程学报, 2016, 52(6):145-152. doi: 10.3901/JME.2016.06.145

    ZHU Guohua, CHENG Aiguo, WANG Zhen, et al. Analysis of lightweight composite body structure for electrical vehicle using the multiscale approach[J]. Journal of Mechanical Engineering,2016,52(6):145-152(in Chinese). doi: 10.3901/JME.2016.06.145
    [6] MAMALIS A G, MANOLAKOS D E, IOANNIDIS M B, et al. On the response of thin-walled CFRP composite tubular components subjected to static and dynamic axial com-pressive loading: experimental[J]. Composite Structures,2005,69(4):407-420. doi: 10.1016/j.compstruct.2004.07.021
    [7] LUO H, YAN Y, ZHANG T. Gradually failure simulation and energy absorption characteristics of GFRP composite tubes subjected to axial dynamic impact[J]. Polymer Composites,2019,40(4):1545-1555. doi: 10.1002/pc.24896
    [8] LIU Q, XING H, JU Y, et al. Quasi-static axial crushing and transverse bending of double hat shaped CFRP tubes[J]. Composite Structures,2014,117:1-11. doi: 10.1016/j.compstruct.2014.06.024
    [9] SONG H W, WAN Z M, XIE Z M, et al. Axial impact behavior and energy absorption efficiency of composite wrapped metal tubes[J]. International Journal of Impact Engineering,2000,24(4):385-401. doi: 10.1016/S0734-743X(99)00165-7
    [10] KIM H C, DONG K S, LEE J J, et al. Crashworthiness of aluminum/CFRP square hollow section beam under axial impact loading for crash box application[J]. Composite Structures,2014,112:1-10. doi: 10.1016/j.compstruct.2014.01.042
    [11] BAMBACH M R, JAMA H H, ELCHALAKANI M. Axial capacity and design of thin-walled steel SHS strengthened with CFRP[J]. Thin-Walled Structures,2009,47(10):1112-1121. doi: 10.1016/j.tws.2008.10.006
    [12] BAMBACH M R, ELCHALAKANI M, ZHAO X L. Composite steel-CFRP SHS tubes under axial impact[J]. Composite Structures,2009,87(3):282-292. doi: 10.1016/j.compstruct.2008.02.008
    [13] GUDEN M, YUKSEL S, TASDEMIRCI A, et al. Effect of aluminum closed-cell foam filling on the quasi-static axial crush performance of glass fiber reinforced polyester composite and aluminum/composite hybrid tubes[J]. Composite Structures,2007,81(4):480-490. doi: 10.1016/j.compstruct.2006.09.005
    [14] ZHAO X L, PHIPHAT P. Tests on CFRP strengthened aluminium RHS subject to end bearing force[C]. Beijing: Proceedings of the Fifth International Conference on FRP Composites in Civil Engineering, 2010.
    [15] COSTAS M, DIAZ J, ROMERA L, et al. Static and dynamic axial crushing analysis of car frontal impact hybrid absorbers[J]. International Journal of Impact Engineering,2013,62:166-181. doi: 10.1016/j.ijimpeng.2013.06.011
    [16] 宋凯, 吴永强, 姚威, 等. 复合材料层合板加强薄壁铝梁吸能特性试验研究[J]. 汽车工程学报, 2016, 6(4):277-285. doi: 10.3969/j.issn.2095-1469.2016.04.06

    SONG Kai, WU Yongqiang, YAO Wei, et al. Experimental investigation on energy-absorbing characteristics of thin-walled aluminum beam strengthened by CFRP plates[J]. Chinese Journal of Automotive Engineering,2016,6(4):277-285(in Chinese). doi: 10.3969/j.issn.2095-1469.2016.04.06
    [17] XIAO X, MCGREGOR C, VAZIRI R, et al. Progress in braided composite tube crush simulation[J]. International Journal of Impact Engineering,2009,36(5):711-719. doi: 10.1016/j.ijimpeng.2008.09.006
    [18] SHI D, XIAO X. An enhanced continuum damage mechanics model for crash simulation of composites[J]. Composite Structures,2018,185:774-785. doi: 10.1016/j.compstruct.2017.10.084
    [19] HUSSEIN R D, RUAN D, LU G. An analytical model of square CFRP tubes subjected to axial compression[J]. Composites Science and Technology,2018,168:170-178. doi: 10.1016/j.compscitech.2018.09.019
    [20] LI Z, YANG H, HU X, et al. Experimental study on the crush behavior and energy-absorption ability of circular magnesium thin-walled tubes and the comparison with aluminum tubes[J]. Engineering Structures,2018,164:1-13. doi: 10.1016/j.engstruct.2018.02.083
    [21] KARAGIOZOVA D, JONES N. Dynamic buckling of elastic-plastic square tubes under axial impact-II: Structural response[J]. International Journal of Impact Engineering,2004,30(2):167-192. doi: 10.1016/S0734-743X(03)00062-9
    [22] HALLQUIST J O. LS-DYNA theoretical manual[CP]. Livermore Software Technology Corporation. California, 2005.
    [23] COSTAS M, MORIN D, LANGSETH M, et al. Axial crushing of aluminum extrusions filled with PET foam and GFRP. An experimental investigation[J]. Thin-Walled Structures,2016,99:45-57. doi: 10.1016/j.tws.2015.11.003
    [24] ABRAMOWICZ W, JONES N. Dynamic progressive buckling of circular and square tubes[J]. International Journal of Impact Engineering,1986,4(4):243-270. doi: 10.1016/0734-743X(86)90017-5
    [25] HANSSEN A G, LANGSETH M, HOPPERSTAD O S. Static and dynamic crushing of square aluminium extrusions with aluminium foam filler[J]. International Journal of Impact Engineering,2000,24(4):347-383. doi: 10.1016/S0734-743X(99)00169-4
  • 加载中
图(19) / 表(5)
计量
  • 文章访问数:  878
  • HTML全文浏览量:  301
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-19
  • 修回日期:  2021-09-07
  • 录用日期:  2021-09-10
  • 网络出版日期:  2021-09-22
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回