留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑纤维面外起伏的变刚度层合板优化策略研究

居相文 肖军 王东立 赵聪 王显峰

居相文, 肖军, 王东立, 等. 考虑纤维面外起伏的变刚度层合板优化策略研究[J]. 复合材料学报, 2022, 40(0): 1-11
引用本文: 居相文, 肖军, 王东立, 等. 考虑纤维面外起伏的变刚度层合板优化策略研究[J]. 复合材料学报, 2022, 40(0): 1-11
Xiangwen JU, Jun XIAO, Dongli WANG, Cong ZHAO, Xianfeng WANG. Study on the optimization strategy of variable stiffness laminate considering out-of-plane fiber waviness[J]. Acta Materiae Compositae Sinica.
Citation: Xiangwen JU, Jun XIAO, Dongli WANG, Cong ZHAO, Xianfeng WANG. Study on the optimization strategy of variable stiffness laminate considering out-of-plane fiber waviness[J]. Acta Materiae Compositae Sinica.

考虑纤维面外起伏的变刚度层合板优化策略研究

基金项目: 国家自然科学基金(52005257);国防基础科研计划(JCKY2019204 A001);增材制造产业国家质量基础设施关键技术体系研究及示范应用(2020 YFF0217700);江苏省自然科学基金(BK20190425)
详细信息
    通讯作者:

    王显峰,博士,副教授,硕士生导师,研究方向为复合材料自动化成型 E-mail: wangxf@nuaa.edu.cn

  • 中图分类号: TB332

Study on the optimization strategy of variable stiffness laminate considering out-of-plane fiber waviness

  • 摘要: 针对变刚度层合板在自动铺放制造过程中因间隙/重叠缺陷产生大量纤维面外起伏缺陷的问题,提出采用铺层偏移法与断送纱策略两种铺层优化策略来进行变刚度层合板的铺层设计,在研究过程中同时了引入考虑间隙/重叠缺陷建模的方法。根据变刚度层合板铺层的特点提出缺陷重复单元的概念,通过对缺陷重复单元的分析来反映纤维面外起伏的影响,并提出通过纤维面外系数来表征变刚度层合板的纤维面外起伏尺度,最后对不同优化策略的变刚度层合板的屈曲性能进行分析。研究表明:基准设计方案、铺层偏移法与断送纱策略所对应的纤维面外起伏系数为0.83,0.95,0.93,所提出的优化策略对变刚度层合板的纤维面外起伏尺度有着明显的抑制作用。铺层偏移法优化后的[±<50/65>]6s变刚度层合板最大厚度超差为33%,所对应的屈曲载荷为9117.1N,屈曲载荷提升17.6%;断送纱策略优化后的[±<50/65>]6s变刚度层合板最大厚度超差为50%,所对应的屈曲载荷为9716.3N,屈曲载荷提升25.3%。

     

  • 图  1  变刚度层合板参考路径曲线

    Figure  1.  Path curve of variable stiffness laminate

    $ {T_0} $-Initial fiber angle;$ {T_1} $-End fiber angle

    图  2  窄丝束预浸料曲率约束分析试验

    Figure  2.  Curvature constraint analysis test of prepreg tow

    图  3  考虑间隙/重叠的变刚度层合板有限元模型建模步骤

    Figure  3.  Modeling steps of finite element model of variable stiffness laminate considering gap/overlap defects

    图  4  变刚度层合板缺陷区域的计算

    Figure  4.  Calculation of defect area of variable stiffness laminate

    图  5  铺层偏移法示意图

    Figure  5.  Schematic diagram of ply offset method

    $ {D_{{\text{vs}}}} $—Interlaminar offset distance

    图  6  断送纱策略示意图

    Figure  6.  Schematic diagram of cut strategy

    $ {N_{\text{d}}}{w_{\text{t}}} $—Boundary control parameter

    图  7  变刚度层合板铺层缺陷重复单元示意图

    Figure  7.  Schematic diagram of defect-repeating unit of variable stiffness laminate

    图  8  含缺陷变刚度层合板试样尺寸与缺陷分布

    Figure  8.  Dimension of variable stiffness laminate sample with defects and defect distribution

    图  9  不同优化策略下[±<50/65>]6 s层合板局部试样的铺层厚度

    Figure  9.  Ply thickness of local specimens of [±< 50/65>]6 s laminate under different optimization strategies

    图  10  不同优化策略下[±<50/65>]6 s层合板的局部试样

    Figure  10.  Local samples of [±<50/65>]6 s laminate under different optimization strategies

    图  11  不同设计策略下[±<50/65>]6 s层合板局部试样的载荷-位移曲线

    Figure  11.  Load-displacement curve of local specimen of [± <50/65>]6 s variable stiffness laminate under different optimization strategies

    图  12  [±<50/65>]6 s层合板局部试样的仿真应力-应变曲线与实际应力-应变曲线

    Figure  12.  Simulated stress-strain curves and actual stress-strain curves of local samples of [±<50/65>]6 s laminate

    图  13  <50/65>铺层实际重叠分布

    Figure  13.  Actual overlap distribution of <50/65> ply

    图  14  HyperMesh软件中<50/65> 铺层重叠区域

    Figure  14.  Overlap area of <50/65> ply in HyperMesh software

    图  15  不同优化策略下的[±<50/65>]6 s层合板整体厚度

    Figure  15.  Overall thickness of [±<50/65>]6 s laminate under different optimization strategies

    图  16  [45/90/-45/0]3 s层合板屈曲载荷

    Figure  16.  Buckling load of [45/90/-45/0]3 s laminate

    图  17  不考虑缺陷建模的[±<50/65>]6 s层合板屈曲载荷

    Figure  17.  Buckling load of [±<50/65>]6 s laminate without considering defect

    图  18  采用铺层偏移法优化的[±<50/65>]6 s层合板屈曲载荷

    Figure  18.  Buckling load of [±<50/65>]6 s laminate optimized by ply offset method

    图  19  采用断送纱策略优化的[±<50/65>]6 s层合板屈曲载荷

    Figure  19.  Buckling load of [±<50/65>]6 s laminate optimized by cut strategy

    表  1  考虑间隙/重叠建模所需的材料力学性能

    Table  1.   Mechanical properties of materials considering gap/overlap modeling

    EM118 carbon
    fiber/A10
    epoxy laminate
    $ {E_1} $/GPa$ {E_2} $=$ {E_3} $/GPa$ {G_{12}} $=$ {G_{13}} $/GPa$ {G_{23}} $/GPa$ {v_{12}} $=$ {v_{13}} $$ {v_{23}} $
    1407.53.6940.30.4
    $ h $/mm$ {\rho _{\text{l}}} $/(g·mm−3)
    0.151.85
    Epoxy resin $ {E_{\text{r}}} $/GPa $ {v_{\text{r}}} $ $ {\rho _{\text{r}}} $/(g·mm-3)
    2 0.25 1.117
    Notes: E1, E2, E3—Elastic modulus of laminate; G12, G13, G23—Shear modulus of laminate; v12, v13, v23—Poisson’s ratio of laminate; h—Thickness of laminate; ρl—Density of laminate; Er—Elastic modulus of resin; vr—Poisson’s ratio of resin; ρr—Density of resin.
    下载: 导出CSV

    表  2  考虑间隙/重叠建模所需的材料力学性能表2 [±<50/65>]6 s层合板纤维面外起伏系数

    Table  2.   Mechanical properties of materials considering gap/overlap modeling Table 2 Coefficient of [±<50/65>]6 s laminate with out-of-plane fiber waviness

    NameBaselinePly offsetCut strategy
    $ {\tau _c} $0.830.950.93
    下载: 导出CSV

    表  3  不同优化策略的[±<50/65>]6 s层合板铺层厚度与屈曲载荷

    Table  3.   Ply thickness and buckling load of [±<50/65>]6 s laminate with different optimization strategies

    Ply typePly angleMaximum thickness
    deviation before
    optimization/%
    Design
    factor
    Buckling load
    before
    optimization /N
    Optimization
    strategy
    Maximum thickness
    deviation after
    optimization/%
    Buckling load
    after
    optimization /N
    Buckling change/%
    Linear ply[45/90/-45/0]3 s7751.5
    Curved ply[±<50/65>]6 s+100No defect8551.4+10.3
    [±<50/65>]6 s100% CoveragePly offset+33.39117.1+17.6
    [±<50/65>]6 s100% CoverageCut strategy+509716.3+25.3
    下载: 导出CSV
  • [1] 陈吉平, 李岩, 刘卫平, 等. 连续纤维增强热塑性树脂基复合材料自动铺放原位成型技术的航空发展现状[J]. 复合材料学报, 2019, 36(4):784-794.

    CHEN Jiping, LI Yan, Liu Weiping, et al. Development of AFP in-situ consolidation technology on continuous fiber reinforced thermoplastic matrix composites in aviation[J]. Acta Materiae Compositae Sinica,2019,36(4):784-794(in Chinese).
    [2] 王显峰, 张育耀, 赵聪, 等. 复合材料自动铺丝设备研究现状[J]. 航空制造技术, 2018, 61(14): 83-90.

    WANG Xianfeng, ZHANG Yuyao, ZHAO Cong, et al. Research Status of Automatic Fiber Placement Equipment for Composite Materials. Aeronautical Manufacturing Technology[J]. 2018, 61(14): 83-90(in Chinese).
    [3] 曹忠亮, 郭登科, 林国军, 等. 碳纤维复合材料自动铺放关键技术的现状与发展趋势[J]. 材料导报, 2021, 35(21):21185-21194.

    CAO Zhongliang, GUO Dengke, LIN Guojun, et al. Current Situation and Development Trend of Key Technologies for Automated Placement of Carbon Fiber Composites[J]. Materials Reports,2021,35(21):21185-21194(in Chinese).
    [4] 卫宇璇, 张明, 刘佳, 刘硕, 崔志刚. 基于自动铺放技术的高精度变刚度复合材料层合板屈曲性能[J]. 复合材料学报, 2020, 37(11):2807-2815.

    WEI Yuxuan, ZHANG Ming, LIU Jia, et al. Buckling performance of high-precision variable stiffness composites laminate based on automatic placement technology[J]. Acta Materiae Compositae Sinica,2020,37(11):2807-2815(in Chinese).
    [5] 欧阳小穗, 刘毅. 高速流场中变刚度复合材料层合板颤振分析[J]. 航空学报, 2018, 39(3):221539-221539.

    OUYANG Xiaosui, LIU Yi. Panel flutter of variable stiffness composite laminates in supersonic flow[J]. Acta Aeronauticaet Astronautica Sinica,2018,39(3):221539-221539(in Chinese).
    [6] 孔斌, 顾杰斐, 陈普会, 等. 变刚度复合材料结构的设计, 制造与分析[J]. 复合材料学报, 2017, 34(10):2121-2133.

    KONG Bin, GU Jiefei, CHEN Puhui, et al. Design, manufacture and analysis of variable-stiffness composite structures[J]. Acta Materiae Compositae Sinica,2017,34(10):2121-2133(in Chinese).
    [7] CAO Zhongliang, DONG Mingjun, SHI Qinghe, et al. Research on buckling characteristics and placement processability of variable stiffness open-hole laminates[J]. Composites Part C:Open Access,2022,7:100233. doi: 10.1016/j.jcomc.2022.100233
    [8] MAROUENE A, BOUKHILI R, CHEN J, et al. Effects of gaps and overlaps on the buckling behavior of an optimally designed variable-stiffness composite laminates–A numerical and experimental study[J]. Composite structures,2016,140:556-566. doi: 10.1016/j.compstruct.2016.01.012
    [9] XIN Z, DUAN Y, XU W, et al. Review of the mechanical performance of variable stiffness design fiber-reinforced composites[J]. Science and Engineering of Composite Materials,2018,25(3):425-37. doi: 10.1515/secm-2016-0093
    [10] NIK M A, FAYAZBAKHSH K, PASINI D, et al. Optimization of variable stiffness composites with embedded defects induced by automated fiber placement[J]. Composite Structures,2014,107:160-166. doi: 10.1016/j.compstruct.2013.07.059
    [11] BLOM A W, LOPES C S, KROMWIJK P J, et al. A theoretical model to study the influence of tow-drop areas on the stiffness and strength of variable-stiffness laminates[J]. Journal of composite materials,2009,43(5):403-425. doi: 10.1177/0021998308097675
    [12] FAYAZBAKHSH K, NIK M A, PASINI D, et al. Defect layer method to capture effect of gaps and overlaps in variable stiffness laminates made by Automated Fiber Placement[J]. Composite Structures,2013,97:245-251. doi: 10.1016/j.compstruct.2012.10.031
    [13] Wu K C. Thermal and Structural Performance of Tow-Placed, Variable Stiffness Panels[D]. Delft: Delft University of Technology, 2006.
    [14] LI X, HALLETT S R, WISNOM M R. Modelling the effect of gaps and overlaps in automated fibre placement (AFP)-manufactured laminates[J]. Science and Engineering of Composite Materials,2015,22(2):115-129. doi: 10.1515/secm-2013-0322
    [15] KULKARNI P, MALI K D, SINGH S. An overview of the formation of fibre waviness and its effect on the mechanical performance of fibre reinforced polymer composites[J]. Composites Part A:Applied Science and Manufacturing,2020,137:106013. doi: 10.1016/j.compositesa.2020.106013
    [16] WANG J, POTTER K D, WISNOM M R, et al. Failure mechanisms under compression loading in composites with designed out-of-plane fibre waviness[J]. Plastics, rubber and composites,2013,42(6):231-238. doi: 10.1179/1743289812Y.0000000019
    [17] ALVES M P, JUNIOR C C, HA S K. Fiber waviness and its effect on the mechanical performance of fiber reinforced polymer composites: An enhanced review[J]. Composites Part A:Applied Science and Manufacturing,2021:106526.
    [18] KULKARNI P, MALI K D, SINGH S. An overview of the formation of fibre waviness and its effect on the mechanical performance of fibre reinforced polymer composites[J]. Composites Part A:Applied Science and Manufacturing,2020,137:106013. doi: 10.1016/j.compositesa.2020.106013
    [19] HSIAO H M, DANIEL I M. Elastic properties of composites with fiber waviness[J]. Composites Part A:Applied Science and Manufacturing,1996,27(10):931-41. doi: 10.1016/1359-835X(96)00034-6
    [20] SUTCLIFFE M P F. Modelling the effect of size on compressive strength of fibre composites with random waviness[J]. Composites Science and Technology,2013,88:142-150. doi: 10.1016/j.compscitech.2013.09.002
    [21] CHUN H J, SHIN J Y, DANIEL I M. Effects of material and geometric nonlinearities on the tensile and compressive behavior of composite materials with fiber waviness[J]. Composites Science and Technology,2001,61(1):125-134. doi: 10.1016/S0266-3538(00)00201-3
    [22] GÜRDAL Z, OLMEDO R. In-plane response of laminates with spatially varying fiber orientations-variable stiffness concept[J]. AIAA journal,1993,31(4):751-758. doi: 10.2514/3.11613
    [23] 顾杰斐, 陈普会, 孔斌, 等. 考虑制造因素的变刚度层合板的抗屈曲铺层优化设计[J]. 复合材料学报, 2018, 35(4):866-875.

    GU Jiefei, CHEN Puhui, KONG Bin. Layup optimization for maximum buckling load of variable-stiffness laminates considering manufacturing factors[J]. Acta Materiae Compositae Sinica,2018,35(4):866-875(in Chinese).
    [24] WOIGK W, HALLETT S R, JONES M I, et al. Experimental investigation of the effect of defects in Automated Fibre Placement produced composite laminates[J]. Composite Structures,2018,201:1004-1017. doi: 10.1016/j.compstruct.2018.06.078
    [25] 宋桂林, 王显峰, 赵聪, 高天成, 薛柯. 规则回转体自动铺丝轨迹规划与丝束增减[J]. 航空学报, 2020, 41(11):423704-423704.

    SONG Guilin, WANG Xianfeng, ZHAO Cong, GAO Tiancheng, XUE Ke. Fiber placement trajectory planning and tows increase or decrease algorithm for revolution body[J]. Acta Aeronauticaet Astronautica Sinica,2020,41(11):423704-423704(in Chinese).
    [26] MISHRA V, PEETERS D M J, ABDALLA M M. Stiffness and buckling analysis of variable stiffness laminates including the effect of automated fibre placement defects[J]. Composite Structures,2019,226:111233. doi: 10.1016/j.compstruct.2019.111233
  • 加载中
计量
  • 文章访问数:  56
  • HTML全文浏览量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-02
  • 录用日期:  2022-04-24
  • 修回日期:  2022-04-10
  • 网络出版日期:  2022-05-11

目录

    /

    返回文章
    返回