留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

十字嵌锁型格栅夹芯结构设计及低速冲击性能

曹忠亮 朱昊 董明军 何庆

曹忠亮, 朱昊, 董明军, 等. 十字嵌锁型格栅夹芯结构设计及低速冲击性能[J]. 复合材料学报, 2022, 40(0): 1-18
引用本文: 曹忠亮, 朱昊, 董明军, 等. 十字嵌锁型格栅夹芯结构设计及低速冲击性能[J]. 复合材料学报, 2022, 40(0): 1-18
Zhongliang CAO, Hao ZHU, Mingjun DONG, Qing HE. Structural design and low speed impact performance of cross recessed grid sandwich[J]. Acta Materiae Compositae Sinica.
Citation: Zhongliang CAO, Hao ZHU, Mingjun DONG, Qing HE. Structural design and low speed impact performance of cross recessed grid sandwich[J]. Acta Materiae Compositae Sinica.

十字嵌锁型格栅夹芯结构设计及低速冲击性能

基金项目: 江苏省高等学校自然科学研究重大项目(21KJA460004);国家自然科学基金 (51705266)
详细信息
    通讯作者:

    曹忠亮,博士,副教授,硕士生导师,研究方向为复合材料铺放成型工艺、夹芯板设计等 E-mail: caoliang-8302@163.com

  • 中图分类号: TB330.1

Structural design and low speed impact performance of cross recessed grid sandwich

  • 摘要: 针对传统复合材料格栅夹芯结构极限承载能力较低、单胞封闭易造成水汽凝结的问题,在分析管胞微观结构和功能性的基础上,提出一种新型十字嵌锁型格栅夹芯结构。首先选取最小体积(最小质量)和最小变形 (最大刚度)为优化目标,利用第二代非支配遗传算法(NSGA-II)完成多目标优化,采用三维Hashin失效准则和改进的刚度退化方法建立格栅夹芯板的冲击渐进损伤有限元分析模型,研究多种低速冲击载荷对不同相对密度夹芯结构的不同位置的破坏机理及力学响应。结果表明:新型格栅夹芯结构表现出良好的低速冲击阻抗,其随芯子的空间分布存在差异,格栅间隙处的抗冲击性能较弱,芯子密度的提高不能有效增强该位置处的冲击强度,夹芯结构所受到的破坏远远大于冲击器撞击格栅交点处的情况;受不同冲击位置和冲击速度的影响,载荷-时间和位移-时间曲线呈现出不同的典型模式,芯子出现屈曲、分层、粘接剥离、折弯变形等失效形式,复合材料上面板发生混合损伤,随着冲击速度的增加,芯子和面板的损伤程度也愈严重。

     

  • 图  1  一种早材管胞微观结构

    Figure  1.  Microstructure of an early wood tracheid

    图  2  早材管胞微观模型简化过程

    Figure  2.  Simplified process of early wood tracheid microscopic model

    图  3  新型格栅夹芯结构原理图及几何参数

    Figure  3.  Schematic diagram of new grid sandwich structure and geometric parameters

    $ {x}_{1} $—Thickness of the core strip; $ {x}_{2} $、 $ {x}_{3} $—Length and height of the rectangular weight reduction hole; $ {x}_{4} $—Length of the crosshead inserts; L—Overall core length; H—Ccore thickness; All parameters are in mm

    图  4  芯子结构参数多目标优化流程图

    Figure  4.  Multi objective optimization flow chart of core structure parameters

    图  5  芯子受力横截面积

    Figure  5.  Stress cross-sectional area of core

    图  6  损伤模型分析流程图

    Figure  6.  Flow chart of damage model analysis

    图  7  CF/PEEK十字嵌锁型复合材料格栅夹芯结构冲击位置:(a)格栅间隙(CO);(b)格栅交点(CX)

    Figure  7.  Impact position of CF/PEEK cross interlocking composite grid sandwich structure: (a) Grid gap (CO); (b) Grid intersection (CX)

    图  8  CF/PEEK十字嵌锁型复合材料格栅夹芯结构冲击有限元模型示意图

    Figure  8.  Schematic diagram of impact finite element model of CF / PEEK cross interlocking composite grid sandwich structure

    图  9  CF/PEEK十字嵌锁型复合材料格栅夹芯结构冲击网格尺寸敏感度分析

    Figure  9.  Impact grid size sensitivity analysis of CF / PEEK cross interlocking composite grid sandwich structure

    图  10  CF/PEEK十字嵌锁型复合材料格栅夹芯结构的载荷-时间和位移-时间曲线(冲击位置CO,冲击速度1 m/s):(a)典型的载荷-时间和位移-时间曲线;(b)不同夹芯结构的载荷-时间和位移-时间曲线

    Figure  10.  Load-time and displacement-time curves of CF / PEEK cross interlocking composite grid sandwich structure (Impact location CO, impact velocity 1 m / s): (a) Typical load-time and displacement-time curves; (b) Load-time and displacement-time curves of different sandwich structures

    图  11  CF/PEEK十字嵌锁型复合材料格栅夹芯结构的分层损伤情况(冲击位置CO,冲击速度1 m/s):(a)分层损伤投影;(b)分层损伤投影面积

    Figure  11.  Delamination damage of CF/PEEK cross interlocking composite grid sandwich structure (Impact position CO, impact velocity 1 m/s): (a) Delamination damage projection; (b) Delamination damage projection area

    图  12  CF/PEEK十字嵌锁型复合材料格栅夹芯结构的载荷-时间和位移-时间曲线(冲击位置CO,冲击速度1.5 m/s):(a)典型的载荷-时间和位移-时间曲线;(b)不同夹芯结构的载荷-时间和位移-时间曲线

    Figure  12.  Load-time and displacement-time curves of CF / PEEK cross interlocking composite grid sandwich structure (impact location CO, impact velocity 1.5 m/s): (a) Typical load-time and displacement-time curves; (b) Load-time and displacement-time curves of different sandwich structures

    图  13  CF/PEEK十字嵌锁型复合材料格栅夹芯结构的分层损伤情况(冲击位置CO,冲击速度1.5 m/s):(a)分层损伤投影;(b)分层损伤投影面积

    Figure  13.  Delamination damage of CF/PEEK cross interlocking composite grid sandwich structure (Impact position CO, impact velocity 1.5 m/s): (a) Delamination damage projection; (b) Delamination damage projection area

    图  14  CF/PEEK十字嵌锁型复合材料格栅夹芯结构的载荷-时间和位移-时间曲线(冲击位置CX,冲击速度1 m/s):(a)典型的载荷-时间和位移-时间曲线;(b)不同夹芯结构的载荷-时间和位移-时间曲线

    Figure  14.  Load-time and displacement-time curves of CF / PEEK cross interlocking composite grid sandwich structure (impact location CX, impact velocity 1 m/ s): (a) Typical load-time and displacement-time curves; (b) Load-time and displacement-time curves of different sandwich structure

    图  15  CF/PEEK十字嵌锁型复合材料格栅夹芯结构的分层损伤情况(冲击位置CX,冲击速度1 m/s):(a)分层损伤投影;(b)分层损伤投影面积

    Figure  15.  Delamination damage of CF/PEEK cross interlocking composite grid sandwich structure (impact position CX, impact velocity 1 m / s): (a) Delamination damage projection; (b) Delamination damage projection area

    图  16  CF/PEEK十字嵌锁型复合材料格栅夹芯结构的载荷-时间和位移-时间曲线(冲击位置CX,冲击速度1.5 m/s):(a)典型的载荷-时间和位移-时间曲线;(b)不同夹芯结构的载荷-时间和位移-时间曲线

    Figure  16.  Load-time and displacement-time curves of CF / PEEK cross interlocking composite grid sandwich structure (Impact location CX, impact velocity 1.5 m / s): (a) Typical load-time and displacement-time curves; (b) Load-time and displacement-time curves of different sandwich structure

    图  17  CF/PEEK十字嵌锁型复合材料格栅夹芯结构的分层损伤情况(冲击位置CX,冲击速度1.5 m/s):(a)分层损伤投影;(b)分层损伤投影面积

    Figure  17.  Delamination damage of CF/PEEK cross interlocking composite grid sandwich structure (impact position CX, impact velocity 1.5 m /s): (a) Delamination damage projection; (b) Delamination damage projection area

    表  1  芯子几何参数

    Table  1.   Geometric parameters of core

    $ {x}_{1}/\mathrm{m}\mathrm{m} $$ {x}_{2}/\mathrm{m}\mathrm{m} $$ {x}_{3}/\mathrm{m}\mathrm{m} $$ {x}_{4}/\mathrm{m}\mathrm{m} $$ {x}_{5} $
    1.525.119.073.4410
    Notes:$ {x}_{5} $ is half the number of inserts.
    下载: 导出CSV

    表  2  3种不同夹芯结构芯子的几何参数及相对密度

    Table  2.   Geometric parameters and relative density of cores of three different sandwich structures

    Specimen$ {x}_{1}/\mathrm{m}\mathrm{m} $$ {x}_{2}/\mathrm{m}\mathrm{m} $$ {x}_{3}/\mathrm{m}\mathrm{m} $$ {x}_{4}/\mathrm{m}\mathrm{m} $$ {x}_{5} $$ \stackrel{-}{\rho }/\mathrm{\%} $
    A1.525.119.073.441017.02
    B15.119.073.441011.50
    C0.75.119.073.44108.18
    Notes:$ \stackrel{-}{\rho } $ is the relative density of the core.
    下载: 导出CSV

    表  3  TC1200碳纤维/聚醚醚酮(CF/PEEK)材料性能

    Table  3.   TC1200 carbon fiber/polyether-ether-ketone (CF/PEEK) material properties

    ParameterValue
    Density $ \rho /(\mathrm{k}\mathrm{g}·{\mathrm{m}}^{-3}) $$1\,600$
    Longitudinal stiffiness $ {E}_{11}/\mathrm{G}\mathrm{P}\mathrm{a} $$ 130 $
    Transverse stiffiness $ {E}_{22}/\mathrm{G}\mathrm{P}\mathrm{a} $$ 10 $
    Out-of-plane stiffness $ {E}_{33}/\mathrm{G}\mathrm{P}\mathrm{a} $$ 10 $
    Poisson's ratio $ {v}_{12},{v}_{13} $$ 0.3 $
    Poisson's ratio $ {v}_{23} $$ 0.3 $
    Shear modulus $ {G}_{12},{G}_{13}/\mathrm{G}\mathrm{P}\mathrm{a} $$ 5.2 $
    Shear modulus $ {G}_{23}/\mathrm{G}\mathrm{P}\mathrm{a} $$ 3.96 $
    Longitudinal tensile strength $ {X}_{\mathrm{t}}/\mathrm{G}\mathrm{P}\mathrm{a} $$ 2.28 $
    Longitudinal compressive strength
    $ {X}_{\mathrm{c}}/\mathrm{G}\mathrm{P}\mathrm{a} $
    $ 1.3 $
    Transverse tensile strength $ {Y}_{\mathrm{t}}/\mathrm{M}\mathrm{P}\mathrm{a} $$ 86 $
    Transverse compressive strength
    $ {Y}_{\mathrm{c}}/\mathrm{M}\mathrm{P}\mathrm{a} $
    $ 254 $
    Thickness direction tensile strength
    $ {Z}_{\mathrm{t}}/\mathrm{M}\mathrm{P}\mathrm{a} $
    $ 86 $
    Out-of-plane tensile strength
    $ {S}_{12},{S}_{23},{S}_{13}/\mathrm{M}\mathrm{P}\mathrm{a} $
    $ 80.81 $
    下载: 导出CSV

    表  4  退化方案系数

    Table  4.   Degradation scheme coefficient

    ParameterValue
    Coefficient of degradation
    rate $ n $
    $ 1 $
    Shear modulus of matrix tensile failure $ {S}_{\mathrm{m}\mathrm{t}} $$ 0.94 $
    Shear modulus of matrix compression failure $ {S}_{\mathrm{m}\mathrm{c}} $$ 0.94 $
    Notes:$ n $ is the dimensionless constant controlling the stiffness degradation rate; $ {S}_{\mathrm{m}\mathrm{t}} $, $ {S}_{\mathrm{m}\mathrm{c}} $ is the shear modulus of matrix failure in tension and compression.
    下载: 导出CSV

    表  5  CF/PEEK夹芯板低速冲击实验与仿真对比

    Table  5.   Comparison between low speed impact experiment and Simulation of CF / PEEK sandwich panel

    $ \stackrel{-}{\rho }/\% $Maximum impact load (Experiment)/NMaximum impact load (Simulation)/NDeviation/%
    3.70$ 1106.62 $1076.802.69
    5.39$ 1241.84 $1200.563.32
    下载: 导出CSV

    表  6  CF/PEEK十字嵌锁型复合材料格栅夹芯结构的损伤形貌 (冲击位置CO,冲击速度1 m/s)

    Table  6.   Damage morphology of CF/PEEK cross interlocking composite grid sandwich structure (Impact location CO, impact velocity 1 m/s)

    SpecimenUpper panelCore
    A
    B
    C
    Notes: (a) Fiber tensile damage; (b) Fiber compression damage; (c) Matrix tensile damage; (d) Matrix compression damage; (e) Delamination damage, the grid damaged in the thickness direction of each layer; (f) Core stress distribution; (g) Core delamination damage.
    下载: 导出CSV

    表  7  CF/PEEK十字嵌锁型复合材料格栅夹芯结构的损伤形貌 (冲击位置CO,冲击速度1.5 m/s)

    Table  7.   Damage morphology of CF/PEEK cross interlocking composite grid sandwich structure (Impact location CO, impact velocity 1.5 m/s)

    SpecimenUpper panelCore
    A
    B
    C
    下载: 导出CSV

    表  8  CF/PEEK十字嵌锁型复合材料格栅夹芯结构的损伤形貌 (冲击位置CX,冲击速度1 m/s)

    Table  8.   Damage morphology of CF/PEEK cross interlocking composite grid sandwich structure (Impact location CX, impact velocity 1 m/s)

    SpecimenUpper panelCore
    A
    B
    C
    下载: 导出CSV

    表  9  CF/PEEK十字嵌锁型复合材料格栅夹芯结构的损伤形貌 (冲击位置CX,冲击速度1.5 m/s)

    Table  9.   Damage morphology of CF/PEEK cross interlocking composite grid sandwich structure (Impact location CX, impact velocity 1.5 m/s)

    SpecimenUpper panelCore
    A
    B
    C
    下载: 导出CSV
  • [1] WEI X Y, LI D F, XIONG J. Fabrication and mechanical behaviors of an all-composite sandwich structure with a hexagon honeycomb core based on the tailor-folding approach[J]. Composites Science and Technology,2019(184):878-894.
    [2] DU Y T, SONG C P, XIONG J, et al. Fabrication and mechanical behaviors of carbon fiber reinforced composite foldcore based on curved-crease origami[J]. Composites Science and Technology,2019(174):94-105.
    [3] SUN F F, LAI I C L, FAN H L. Failure mode maps for composite anisogrid lattice sandwich cylinders under fundamental loads[J]. Composites Science and Technology,2017(152):149-158.
    [4] SUN F F, WANG P, LI W X, et al. Effects of circular cutouts on mechanical behaviors of carbon fiber reinforced lattice-core sandwich cylinder[J]. Composites Part A:Applied Science and Manufacturing,2017(100):313-323.
    [5] UMER R, BARSOUM Z, JISHI H Z, et al. Analysis of the compression behaviour of different composite lattice designs[J]. Journal of Composite Materials,2018,52(6):715-729. doi: 10.1177/0021998317714531
    [6] 胡记强, 王兵, 张涵其, 等. 热塑性复合材料构件的制备及其在航空航天领域的应用[J]. 宇航总体技术, 2020, 4(04):61-70.

    HU Jiqiang, WANG Bing, ZHANG Hanqi, et al. Preparation of thermoplastic composite components and their application in aerospace field[J]. General aerospace technology,2020,4(04):61-70(in Chinese).
    [7] GIUSTO G, TOTARO G, SPENA P, et al. Composite grid structure technology for space applications[J]. Materials Today:Proceedings,2021,34:332-340. doi: 10.1016/j.matpr.2020.05.754
    [8] 熊健, 李志彬, 刘惠彬, 等. 航空航天轻质复合材料壳体结构研究进展[J]. 复合材料学报, 2021, 38(6):1629-1650.

    XIONG Jian, LI Zhibin, LIU Huibin, et al. Advances in aerospace lightweight composite shell structure[J]. Acta Materiae Compositae Sinica,2021,38(6):1629-1650(in Chinese).
    [9] 王晓旭, 张典堂, 钱坤, 等. 深海纤维增强树脂复合材料圆柱耐压壳力学性能的研究进展[J]. 复合材料学报, 2020, 37(01): 16-26.

    WANG Xiao Xu, ZHANG Dian Tang, QIAN Kun, et al. Research progress on mechanical properties of deep-sea fiber reinforced resin composite cylindrical pressure shells[J]. Acta Materiae Compositae Sinica 2020, 37(1): 16-26(in Chinese).
    [10] MA Q, REJAB M R M, SIREGAR J P, et al. A review of the recent trends on core structures and impact response of sandwich panels[J]. Journal of Composite Materials,2021,55(18):2513-2555. doi: 10.1177/0021998321990734
    [11] AMIR E, HAMID D. Influence of employing laminated isogrid configuration on mechanical behavior of grid structures[J]. Journal of Reinforced Plastics and Composites,2019,38(16):518-601.
    [12] DAVOUD S G, GHOLAMHOSSEIN R, GHOLAMHOSSEIN L, et al. Buckling prediction of composite lattice sandwich cylinders (CLSC) through the vibration correlation technique (VCT): Numerical assessment with experimental and analytical verification[J]. Composites Part B,2020(199):724-741.
    [13] LIU Zhaobing, CHEN Hantang, XING Shuaiqi. Mechanical performances of metal-polymer sandwich structures with 3D-printed lattice cores subjected to bending load[J]. Archives of Civil and Mechanical Engineering,2020,20(3):649-667.
    [14] MENG L, LAN X, ZHAO J, et al. Failure analysis of bio-inspired corrugated sandwich structures fabricated by laser powder bed fusion under three-point bending[J]. Composite Structures,2021,263(1):113724.
    [15] HU K, LIN K, GU D, et al. Mechanical properties and deformation behavior under compressive loading of selective laser melting processed bio-inspired sandwich structures[J]. Materials Science and Engineering:A,2019,762:138089. doi: 10.1016/j.msea.2019.138089
    [16] 杨爽, 彭志龙, 姚寅, 等. 龟壳角质层的微结构特征及拉伸力学性能[J]. 中国科学:物理学, 力学, 天文学, 2020, 50(9):185-193.

    YANG Shuang, PENG Zhilong, YAO Yin, et al. Microstructure characteristics and tensile mechanical properties of tortoise shell cuticle[J]. Chinese Science:Physics, mechanics, astronomy,2020,50(9):185-193(in Chinese).
    [17] LI H, WANG X, HU X, et al. Vibration and damping study of multifunctional grille composite sandwich plates with an IMAS design approach[J]. Composites Part B:Engineering,2021,223:109078. doi: 10.1016/j.compositesb.2021.109078
    [18] PENG X, DAI Z, LIU J, et al. Design and Simulation of Sandwich Structure of Exoskeleton Backplate Based on Biological Inspiration[J]. Journal of Physics:Conference Series. IOP Publishing,2021,1885(5):052066. doi: 10.1088/1742-6596/1885/5/052066
    [19] THORSSON S I, WAAS A M, RASSAIAN M. Low-velocity impact predictions of composite laminates using a continuum shell based modeling approach Part b: BVID impact and compression after impact[J]. International Journal of Solids and Structures,2018,155:201-212. doi: 10.1016/j.ijsolstr.2018.07.018
    [20] BOGENFELD R, KREIKEMEIER J, WILLE T. Review and benchmark study on the analysis of low-velocity impact on composite laminates[J]. Engineering Failure Analysis,2018,86:72-99. doi: 10.1016/j.engfailanal.2017.12.019
    [21] LE V T, SAN Ha N, GOO N S. Advanced sandwich structures for thermal protection systems in hypersonic vehicles: A review[J]. Composites Part B:Engineering,2021,226:109301. doi: 10.1016/j.compositesb.2021.109301
    [22] HU J, LIU A, ZHU S, et al. Novel panel-core connection process and impact behaviors of CF/PEEK thermoplastic composite sandwich structures with truss cores[J]. Composite Structures,2020,251:112659. doi: 10.1016/j.compstruct.2020.112659
    [23] 张亚文, 陈秉智, 石姗姗, 等. 格栅-蜂窝混式芯体夹芯结构的低速冲击性能[J]. 复合材料学报, 2022, 38:1-9. doi: 10.1007/s10114-021-0023-4

    ZHANG Yawen, CHEN Bingzhi, SHI Shanshan, et al. Low-velocity impact performance of grid-honeycomb hybrid core sandwich structure[J]. Acta Materiae Compositae Sinica,2022,38:1-9(in Chinese). doi: 10.1007/s10114-021-0023-4
    [24] ÖZEN İ, ÇAVA K, GEDIKLI H, et al. Low-energy impact response of composite sandwich panels with thermoplastic honeycomb and reentrant cores[J]. Thin-Walled Structures,2020,156:106989. doi: 10.1016/j.tws.2020.106989
    [25] 卿彦, 廖宇, 刘婧祎, 等. 木基储能材料研究新进展[J]. 林业工程学报, 2021, 6(05):1-13.

    QING Yan, LIAO Yu, LIU Jingyi, et al. New research progress of wood-based energy storage materials[J]. Journal of forestry engineering,2021,6(05):1-13(in Chinese).
    [26] ROZYLO P. Experimental-numerical study into the stability and failure of compressed thin-walled composite profiles using progressive failure analysis and cohesive zone model[J]. Composite Structures,2021,257:113303. doi: 10.1016/j.compstruct.2020.113303
    [27] ZHOU S, LI Y, FU K, et al. Progressive fatigue damage modelling of fibre-reinforced composite based on fatigue master curves[J]. Thin-Walled Structures,2021,158:107173. doi: 10.1016/j.tws.2020.107173
    [28] NAGARAJ M H, REINER J, VAZIRI R, et al. Compressive damage modeling of fiber-reinforced composite laminates using 2D higher-order layer-wise models[J]. Composites Part B:Engineering,2021,215:108753. doi: 10.1016/j.compositesb.2021.108753
    [29] LIU J, LIU J, MEI J, et al. Investigation on manufacturing and mechanical behavior of all-composite sandwich structure with Y-shaped cores[J]. Composites Science and Technology,2018,159:87-102. doi: 10.1016/j.compscitech.2018.01.026
    [30] DE Camargo F V, PAVLOVIC A, SCHENAL E C, et al. Explicit Stacked-Shell Modelling of Aged Basalt Fiber Reinforced Composites to Low-Velocity Impact[J]. Composite Structures,2021,256:113017. doi: 10.1016/j.compstruct.2020.113017
    [31] LU T, CHEN X, WANG H. Predicting compression-after-impact behavior of thermoplastic composite laminates by an experiment-based approach[J]. Composites Science and Technology,2021,213:108952. doi: 10.1016/j.compscitech.2021.108952
  • 加载中
计量
  • 文章访问数:  106
  • HTML全文浏览量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-07
  • 录用日期:  2022-03-03
  • 修回日期:  2022-03-02
  • 网络出版日期:  2022-03-19

目录

    /

    返回文章
    返回