留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑剪跨比及配纤率影响的CFRP加固剪力墙抗剪承载力计算方法

张滨麟 金浏 陈凤娟 杜修力

张滨麟, 金浏, 陈凤娟, 等. 考虑剪跨比及配纤率影响的CFRP加固剪力墙抗剪承载力计算方法[J]. 复合材料学报, 2023, 41(0): 1-16
引用本文: 张滨麟, 金浏, 陈凤娟, 等. 考虑剪跨比及配纤率影响的CFRP加固剪力墙抗剪承载力计算方法[J]. 复合材料学报, 2023, 41(0): 1-16
Binlin ZHANG, Liu JIN, Fengjuan CHEN, Xiuli DU. Calculation method for shear bearing capacity of CFRP-strengthened shear wall considering shear span ratio and CFRP ratio[J]. Acta Materiae Compositae Sinica.
Citation: Binlin ZHANG, Liu JIN, Fengjuan CHEN, Xiuli DU. Calculation method for shear bearing capacity of CFRP-strengthened shear wall considering shear span ratio and CFRP ratio[J]. Acta Materiae Compositae Sinica.

考虑剪跨比及配纤率影响的CFRP加固剪力墙抗剪承载力计算方法

基金项目: 国家重点研发计划项目(2018YFC1504302);北京市自然科学基金项目(JQ22025);国家自然科学基金项目(52208453)
详细信息
    通讯作者:

    杜修力,博士,中国工程院院士,研究方向为土木工程防灾减灾 E-mail:duxiuli@bjut.edu.cn

  • 中图分类号: TU398.2;TU352.11

Calculation method for shear bearing capacity of CFRP-strengthened shear wall considering shear span ratio and CFRP ratio

Funds: National Key Basic Research and Development Program of China (2018YFC1504302); Beijing Municipal Natural Science Foundation (JQ22025); National Natural Science Foundation of China (52208453)
  • 摘要: 钢筋混凝土剪力墙作为一种抗侧力构件,在高层建筑中发挥重要抗震作用,并且随着我国城镇化建设的快速发展,钢筋混凝土剪力墙得到了广泛应用。但是,剪力墙在服役期内会由于抗剪配筋不足、结构老化或遭受外部荷载等原因,使得剪力墙无法满足建筑结构的抗侧力需求,需要对其进行抗剪加固。而相较于传统的粘钢加固、增大截面及注浆加固等方法,外贴纤维增强复合材料(FRP)加固因其具有施工方便、高强高效和耐久耐腐等优点,被认为是加固现有钢筋混凝土结构的一种改进方式。本文为研究外贴CFRP加固钢筋混凝土剪力墙的抗剪性能及作用机制,通过数值模拟方法,建立了可以反映出CFRP材料损伤及CFRP-混凝土界面剥离的CFRP加固剪力墙三维数值模型,讨论了不同剪跨比、配纤率及加固方式下CFRP加固钢筋混凝土剪力墙的抗剪性能及作用机制。基于模拟结果,提取出CFRP的抗剪贡献,与美国ACI规范预测结果进行对比分析,发现CFRP的抗剪贡献随着剪跨比的增大而急剧降低,且CFRP抗剪贡献并不是随着加固层数的增大而线性增长。鉴于此,结合美国ACI规范的公式形式,提出了剪跨比及加固层数影响系数,建立了CFRP抗剪贡献建议计算公式。最后,通过与FRP加固剪力墙试验数据的对比,发现建议公式可以更为准确合理的反映剪跨比、加固方式及配纤率对CFRP抗剪贡献的影响规律,美国ACI规范预测值与试验结果的平均绝对误差为54%,而建议公式预测值与试验结果的平均绝对误差为8%,验证了建议计算方法的有效性。不同加固方式下ACI规范及本文建议公式预测CFRP抗剪贡献与模拟结果对比

     

  • 图  1  CFRP加固剪力墙数值模型

    Figure  1.  Numerical models of CFRP-strengthened shear wall

    图  2  CFRP 材料面内受力情况

    Figure  2.  Force conditions of CFRP materials in plane

    图  3  不同加固方式下CFRP加固RC剪力墙模拟与试验[32]结果对比

    Figure  3.  Comparison of simulated and experimental results[32] of CFRP-strengthened RC shear walls under different wrapping methods

    图  4  不同剪跨比下CFRP加固RC剪力墙模拟与试验[21]结果对比

    Figure  4.  Comparison of simulated and experimental results[21] of CFRP-strengthened RC shear walls under different shear span ratios

    图  5  CFRP加固RC剪力墙破坏模式

    Figure  5.  Failure patterns of CFRP-strengthened shear walls

    图  6  CFRP加固RC剪力墙荷载-位移曲线

    Figure  6.  Load-displacement curves of CFRP-strengthened shear walls

    图  7  CFRP的抗剪贡献

    Figure  7.  Shear contribution of CFRP

    图  8  FRP加固剪力墙试验[14,15,21,32,35-37]中得到的FRP抗剪贡献值与ACI规范[22]预测值的对比

    Figure  8.  Comparison of FRP shear contribution obtained from FRP-strengthened shear wall tests[14,15,21,32,35-37] with ACI code[22] predictions

    图  9  不同剪跨比下CFRP加固剪力墙中CFRP抗剪贡献模拟值与规范值[22]的对比

    Figure  9.  Comparison of simulated and code[22] values of CFRP shear contribution in CFRP-strengthened shear walls for different shear span ratios

    图  10  不同加固层数下CFRP加固剪力墙中CFRP抗剪贡献模拟值与规范值[22]的对比

    Figure  10.  Comparison of simulated and code[22] values of CFRP shear contribution in CFRP-strengthened shear walls for different CFRP layers

    图  11  本文建议公式预测的CFRP加固剪力墙中CFRP抗剪贡献与模拟结果对比

    Figure  11.  Comparison of CFRP shear contribution in CFRP-strengthened shear walls predicted by the proposed formula with simulation results

    图  12  FRP加固剪力墙试验[14,15,21,32,35-37]中得到的FRP抗剪贡献值与ACI规范[22]及建议公式预测值的对比

    Figure  12.  Comparison of FRP shear contribution obtained from FRP-strengthened shear wall tests[14,15,21,32,35-37] with predicted values of ACI code[22] and suggested formulas

    表  1  Altin[32]及Woods[21]试验中CFRP材料力学参数

    Table  1.   Mechanical parameters of the CFRP material in Altin[32] and Woods[21]

    Property of CFRPAltin[32]Woods[21]
    Thickness/mm0.120.11
    Tensile strength/MPa41004000
    Elastic modulus/GPa231230
    Ultimate tensile strain/%1.71.7
    下载: 导出CSV

    表  2  CFRP材料及CFRP-混凝土界面力学参数

    Table  2.   Mechanical parameters of the CFRP material and CFRP-concrete interface CFRP material

    CFRP
    material
    Parameter
    value/MPa
    CFRP
    interface
    Parameter
    value/MPa
    $ {\text{X}}^{\text{T}} $ 350.00 $ {\text{t}}_{\text{n}}^{\text{0}} $ 0.31
    $ {\text{X}}^{\text{C}} $ 300.00 $ {\text{t}}_{\text{s}}^{\text{0}} $ 0.48
    $ {\text{Y}}^{\text{T}} $ 1.50 $ {\text{t}}_{\text{t}}^{\text{0}} $ 0.48
    $ {\text{Y}}^{\text{C}} $ 50.00 $ {\text{G}}_{\text{n}} $ 100.00
    $ {\text{S}}^{\text{T}} $ 40.00 $ {\text{G}}_{\text{s}} $ 125.00
    $ {\text{S}}^{\text{L}} $ 10.00 $ {\text{G}}_{\text{t}} $ 125.00
    Notes: $ {\text{X}}^{\text{T}} $, $ {\text{X}}^{\text{C}} $, $ {\text{Y}}^{\text{T}} $ and $ {\text{Y}}^{\text{C}} $ are the longitudinal tensile strength, longitudinal compressive strength, transverse tensile strength and transverse compressive strength; $ {\text{S}}^{\text{T}} $ and $ {\text{S}}^{\text{L}} $ are the transverse and longitudinal shear strength; $ {\text{t}}_{\text{n}}^{\text{0}} $, $ {\text{t}}_{\text{s}}^{\text{0}} $ and $ {\text{t}}_{\text{t}}^{\text{0}} $ represent the peak values of the contact stress component in the normal (n), the first (s) and the second (t) direction; $ {\text{G}}_{\text{n}} $, $ {\text{G}}_{\text{s}} $ and $ {\text{G}}_{\text{t}} $ refer to the work done by the traction and its conjugate displacement in the normal, the first, and the second shear directions, respectively.
    下载: 导出CSV

    表  3  试验数据库具体细节参数及FRP抗剪贡献

    Table  3.   Detailed parameters and FRP shear contribution of the test database

    Reference FRP wrapping method
    and layer
    Shear
    span ratio
    Structure size
    H×L×D/mm
    Experimental
    result/kN
    ACI[22]
    result/kN
    Proposed formula
    result/kN
    Shen[15] Fully 2.0 layer 1.60 1600×1000×120 34.10 77.24 62.20
    Antoniades[36] Fully 1.0 layer 1.00 1200×1200×100 63.40 120.38 64.63
    Antoniades[37] Fully 1.0 layer 1.50 1800×1200×100 48.40 120.38 48.15
    Woods[21] Two-sides 3.0 layer 1.20 1800×1500×100 292.00 619.34 322.06
    Woods[21] Two-sides 3.0 layer 0.85 1800×2100×140 490.00 1213.91 595.38
    Woods[35] Two-sides 3.0 layer 0.65 1800×2750×180 980.00 1513.95 896.26
    El-Sokkary[14] Horizontal 1.0 layer 0.87 1045×1200×80 47.00 200.93 51.07
    Shen[15] Horizontal 2.0 layer 1.60 1600×1000×120 42.20 67.10 44.76
    Altin[32] Horizontal 1.0 layer 1.50 1500×1000×100 100.00 57.12 90.48
    下载: 导出CSV
  • [1] 万怡秀, 徐自国, 纪晓东, 等. 拉压变轴力下小剪跨比预应力混凝土墙往复受剪试验研究[J]. 建筑结构学报, 2022, 43(6):219-232.

    WAN Yixiu, XU Ziguo, JI Xiaodong, et al. Experimental study on cyclic shear behavior of low-aspect-ratio prestressed concrete walls under variable axial tension-compression forces[J]. Journal of Building Structures,2022,43(6):219-232(in Chinese).
    [2] 刘力平, 张耀, 李伟朋, 等. 高层剪力墙结构内置型钢加固方法研究及有限元分析[J]. 建筑结构, 2021, 51(S2):1321-1328.

    LIU Liping, ZHANG Yao, LI Weipeng, et al. Method reserch and FEM analysis of reinforced shear wall by embedded section steel in tall building with shear wall structure[J]. Building Structure,2021,51(S2):1321-1328(in Chinese).
    [3] 封伟, 任宜春. 工字型钢筋混凝土剪力墙的抗震性能分析[J]. 工程建设, 2021, 53(10):7-13+31. doi: 10.13402/j.gcjs.2021.10.129

    FENG Wei, REN yichun. Seismic performance analysis of I-shaped reinforced concrete shear wall[J]. Engineering Construction,2021,53(10):7-13+31(in Chinese). doi: 10.13402/j.gcjs.2021.10.129
    [4] 廖维张, 张春磊, 贾天宇, 等. 预应力高强钢绞线网-聚合物砂浆加固剪力墙抗震性能试验研究[J]. 建筑结构学报, 2017, 38(6):70-77. doi: 10.14006/j.jzjgxb.2017.06.008

    LIAO Weizhang, ZHANG Chunlei, JIA Tianyu, et al. Experimental investigation on seismic behavior of shear wall retrofitted with pre-stressed steel wire mesh and polymer mortar[J]. Journal of Building Structures,2017,38(6):70-77(in Chinese). doi: 10.14006/j.jzjgxb.2017.06.008
    [5] 曲哲, 张令心. 日本钢筋混凝土结构抗震加固技术现状与发展趋势[J]. 地震工程与工程振动, 2013, 33(4):61-74. doi: 10.13197/j.eeev.2013.04.63.quzh.019

    QU Zhe, ZHANG Lingxin. State of the art and development tendency of seismic retrofit for reinforced concrete structures in Japan[J]. Earthquake Engineering and Engineering Dynamics,2013,33(4):61-74(in Chinese). doi: 10.13197/j.eeev.2013.04.63.quzh.019
    [6] 田时雨, 任凤鸣, 伍峻磊, 等. FRP约束型钢混凝土柱-RC环梁节点震后轴压性能评估[J]. 复合材料学报复合材料学报, 2022, 39(11):5343-5354.

    TIAN Shiyu, REN Fengming, WU Junlei, et al. Evaluation of axial compressive performance of FRP-confined steel-reinforced concrete column-to-RC ring beam joint with seismic damage[J]. Acta Materiae Compositae Sinica,2022,39(11):5343-5354(in Chinese).
    [7] 白玉磊, 孙鹏轩, 贾俊峰. PET FRP约束矩形RC柱中纵筋屈曲行为[J]. 复合材料学报, 2022, 39(10):1-14.

    BAI Yulei, SUN Pengxuan, JIA Junfeng. Buckling behavior of steel rebars in PET FRP-confined rectangular RC columns[J]. Acta Materiae Compositae Sinica,2022,39(10):1-14(in Chinese).
    [8] LOMBARD JC. Seismic strengthening and repair of reinforced concrete shear walls using externally bonded carbon fibre tow sheets [D]. Carleton University, 1999.
    [9] WEI H, WU Z, GUO X, et al. Experimental study on partially deteriorated strength concrete columns confined with CFRP[J]. Engineering Structures,2009,31(10):2495-2505. doi: 10.1016/j.engstruct.2009.05.006
    [10] EL-SOKKARY H. Seismic Retrofit of Reinforced Concrete Shear Walls using Fibre Reinforced Polymer Composites [J]. Civil Engineering, 2012.
    [11] HATAMI F, GHAMARI A, RAHA A. Investigating the properties of steel shear walls reinforced with Carbon Fiber Polymers (CFRP)[J]. Journal of Constructional Steel Research,2011:70.
    [12] MEFTAH SA, TOUNSI A, MEGUENI A, et al. Lateral stiffness and vibration characteristics of RC shear walls bonded with thin composite plates[J]. Composite Structures,2006,73(1):110-119. doi: 10.1016/j.compstruct.2005.01.036
    [13] MEFTAH SA, YEGHNEM R, TOUNSI A, et al. Seismic behavior of RC coupled shear walls repaired with CFRP laminates having variable fibers spacing[J]. Construction & Building Materials,2007,21(8):1661-1671.
    [14] EL-SOKKARY H, GALAL K. Seismic Behaviour Of Frp-strengthened Rc Shear Walls[J]. Journal of Composites for Construction,2013,31(9):603-613.
    [15] SHEN D, YANG Q, JIAO Y, et al. Experimental investigations on reinforced concrete shear walls strengthened with basalt fiber-reinforced polymers under cyclic load[J]. Construction and Building Materials,2017,136:217-229. doi: 10.1016/j.conbuildmat.2016.12.102
    [16] DELNAVAZ A, HAMIDNIA M. Analytical investigation on shape configuration of CFRP strips on lateral loading capacity of strengthened RC shear wall[J]. Structural Concrete,2016,17(6):1059-1070. doi: 10.1002/suco.201500196
    [17] 李兵, 李宏男. 不同剪跨比钢筋混凝土剪力墙拟静力试验研究[J]. 工业建筑, 2010, 40(9):32-36. doi: 10.13204/j.gyjz2010.09.009

    LI Bing, LI Hongnan. Research on quasi-static test of reinforced concrete shear walls with different shear-span ratio[J]. Industrial Construction,2010,40(9):32-36(in Chinese). doi: 10.13204/j.gyjz2010.09.009
    [18] MIAO L, JIN L, LI D, et al. Effect of shear-span ratio and vertical reinforcement ratio on the failure of geometrical-similar RC shear walls[J]. Engineering Failure Analysis,2022:106407.
    [19] SALONIKIOS TN, KAPPOS AJ, TEGOS IA, et al. Cyclic load behavior of low-slenderness R/C walls: Design basis and test results[J]. ACI Structural Journal,1999,96(4):649-660.
    [20] 曾洪超. FRP加固混凝土竖向构件的抗震性能研究 [D]. 北京: 北京工业大学, 2010.

    ZENG Hongchao. Study on seismic performance of rc vertical components strengthened with frp [D]. Beijing: Beijing University Of Technology, 2010(in Chinese).
    [21] WOODS JE, LAU DT, CRUZ-NOGUEZ CA. In-plane seismic strengthening of nonductile reinforced concrete shear walls using externally bonded CFRP sheets[J]. Journal of Composites for Construction,2016,20(6):04016052. doi: 10.1061/(ASCE)CC.1943-5614.0000705
    [22] American Concrete Institute. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures: ACI 440.2 R-17 [S]. Farmington Hills: American Concrete Institute, 2017.
    [23] Canadian Standard Association. CSA–S806–12 Design and construction of building structures with fiber-reinforced polymers [S]. Ontario, Canada: Canadian Standards Association International, 2017.
    [24] 中华人民共和国住房和城乡建设部. 纤维增强复合材料建设工程应用技术规范: GB 50608−2020 [S]. 北京: 中国标准出版社, 2010.

    Ministry of Housing and Urban-Rural Development of People’s Republic of China. Technical standard for fiber reinforced polymer (FRP) in construction: GB 50608−2020 [S]. Beijing: China Standards Press, 2020(in Chinese).
    [25] LEE J, FENVES GL. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics,1998,124(8):892-900. doi: 10.1061/(ASCE)0733-9399(1998)124:8(892)
    [26] 张帅, 金浏, 李冬, 等. 结构尺寸对钢筋混凝土短柱抗震性能影响: 细观分析[J]. 工程力学, 2018, 35(12):164-174.

    ZHANG Shuai, JIN Liu, LI Dong, et al. Effect of structural size on seismic performance of reinforced concrete short columns- a meso-scale study[J]. Engineering mechanics,2018,35(12):164-174(in Chinese).
    [27] TENG JG, CHEN JF, SMITH ST, et al. Behaviour and strength of FRP-strengthened RC structures: a state-of-the-art review[J]. Proceedings of the institution of civil engineers-structures and buildings,2003,156(1):51-62. doi: 10.1680/stbu.2003.156.1.51
    [28] BSISU KAD, HUSSEIN HH, SARGAND SM. The use of Hashin damage criteria, CFRP–concrete interface and concrete damage plasticity models in 3 D finite element modeling of retrofitted reinforced concrete beams with CFRP sheets[J]. Arabian Journal for Science and Engineering,2017,42(3):1171-1184. doi: 10.1007/s13369-016-2356-3
    [29] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics,1980,47(2):329-334. doi: 10.1115/1.3153664
    [30] CAMANHO PP, DÁVILA CG. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials [R]. 2002.
    [31] BENZEGGAGH ML, KENANE M. Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus[J]. Composites Science and Technology,1996,56(4):439-449. doi: 10.1016/0266-3538(96)00005-X
    [32] ALTIN S, ANIL O, KOPRAMAN Y, et al. Hysteretic behavior of RC shear walls strengthened with CFRP strips[J]. Composites Part B Engineering,2013,44(1):321-329. doi: 10.1016/j.compositesb.2012.05.009
    [33] SARGAND SM, BALL R. Special Students Study: Experimental Analysis of Composite Reinforced Bridge: Field Study [M]. Department of Civil Engineering, Ohio University, 2000.
    [34] 中华人民共和国住房和城乡建设部. GB 50010-2010混凝土结构设计规范 [S]. 北京, 中国建筑工业出版社, 2015.

    China’s Ministry of Housing and Urban-Rural Construction (MHURC). GB 50010-2010 Code for design of concrete structures [S]. Beijing: China Architecture and Building Press, 2015(in Chinese).
    [35] WOODS JE. Advances in Retrofit and Testing of Reinforced Concrete Shear Walls: Part 1-Seismic Retrofit of Deficient Walls with Fibre-Reinforced Polymer Sheets Part 2-Building Scale Performance Evaluation using Hybrid Simulation [D]. Carleton University, 2019.
    [36] ANTONIADES KK, SALONIKIOS TN, KAPPOS AJ. Cyclic tests on seismically damaged reinforced concrete wall strengthened using fiber-reinforced polymer reinforcement[J]. ACI Structural Journal,2003,100(4):510-518.
    [37] ANTONIADES KK, SALONIKIOS TN, KAPPOS AJ. Tests on seismically damaged reinforced concrete walls repaired and strengthened using fiber-reinforced polymers[J]. Journal of Composites for Construction,2005,9(3):236-246. doi: 10.1061/(ASCE)1090-0268(2005)9:3(236)
  • 加载中
计量
  • 文章访问数:  107
  • HTML全文浏览量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-24
  • 修回日期:  2023-01-13
  • 录用日期:  2023-01-18
  • 网络出版日期:  2023-02-17

目录

    /

    返回文章
    返回