Calculation method for shear bearing capacity of CFRP-strengthened shear wall considering shear span ratio and CFRP ratio
-
摘要:
钢筋混凝土剪力墙作为一种抗侧力构件,在高层建筑中发挥重要抗震作用,并且随着我国城镇化建设的快速发展,钢筋混凝土剪力墙得到了广泛应用。但是,剪力墙在服役期内会由于抗剪配筋不足、结构老化或遭受外部荷载等原因,使得剪力墙无法满足建筑结构的抗侧力需求,需要对其进行抗剪加固。而相较于传统的粘钢加固、增大截面及注浆加固等方法,外贴纤维增强复合材料(FRP)加固因其具有施工方便、高强高效和耐久耐腐等优点,被认为是加固现有钢筋混凝土结构的一种改进方式。本文为研究外贴CFRP加固钢筋混凝土剪力墙的抗剪性能及作用机制,通过数值模拟方法,建立了可以反映出CFRP材料损伤及CFRP-混凝土界面剥离的CFRP加固剪力墙三维数值模型,讨论了不同剪跨比、配纤率及加固方式下CFRP加固钢筋混凝土剪力墙的抗剪性能及作用机制。基于模拟结果,提取出CFRP的抗剪贡献,与美国ACI规范预测结果进行对比分析,发现CFRP的抗剪贡献随着剪跨比的增大而急剧降低,且CFRP抗剪贡献并不是随着加固层数的增大而线性增长。鉴于此,结合美国ACI规范的公式形式,提出了剪跨比及加固层数影响系数,建立了CFRP抗剪贡献建议计算公式。最后,通过与FRP加固剪力墙试验数据的对比,发现建议公式可以更为准确合理的反映剪跨比、加固方式及配纤率对CFRP抗剪贡献的影响规律,美国ACI规范预测值与试验结果的平均绝对误差为54%,而建议公式预测值与试验结果的平均绝对误差为8%,验证了建议计算方法的有效性。 不同加固方式下ACI规范及本文建议公式预测CFRP抗剪贡献与模拟结果对比 Abstract: To explore the shear performance and the corresponding mechanisms of Carbon Fiber Reinforced Polymer (CFRP) strengthened Reinforced Concrete (RC) shear walls, a three-dimensional numerical model based on the Hashin damage criteria that captures the CFRP-concrete interface debonding behaviors was developed. Using the proposed model, the influences of shear span ratio, CFRP ratio and wrapping method on the shear capacities of the CFRP-strengthened RC shear wall were investigated. It is found that: (1) the external CFRP strips effectively mitigate the development of the shear primary cracks; (2) the increasing shear span ratio reduces significantly the shear contribution provided by CFRP strips on the CFRP-strengthened RC shear walls; (3) the shear contribution of CFRP is not linearly dependent on the number of CFRP layers. From qualitative to quantification analysis, the influence coefficient of shear span ratio and CFRP layer was introduced based on the numerical calculations. Furthermore, writing in the form of the American Code (ACI 440.2R-17), a calculation formula characterizing the shear contribution of CFRP was established. By comparing with the experimental data, it is noticed that the proposed formula gives more accurate descriptions on the influence of shear span ratio, CFRP ratio and wrapping method on the shear contribution of CFRP. The average absolute error between the prediction results and the experimental results is 8.0%, thus, verifying the effectiveness of the proposed calculation method.-
Key words:
- RC shear wall /
- CFRP-strengthened /
- shear performance /
- shear span ratio /
- shear contribution
-
表 2 CFRP材料及CFRP-混凝土界面力学参数
Table 2. Mechanical parameters of the CFRP material and CFRP-concrete interface CFRP material
CFRP
materialParameter
value/MPaCFRP
interfaceParameter
value/MPa$ {\text{X}}^{\text{T}} $ 350.00 $ {\text{t}}_{\text{n}}^{\text{0}} $ 0.31 $ {\text{X}}^{\text{C}} $ 300.00 $ {\text{t}}_{\text{s}}^{\text{0}} $ 0.48 $ {\text{Y}}^{\text{T}} $ 1.50 $ {\text{t}}_{\text{t}}^{\text{0}} $ 0.48 $ {\text{Y}}^{\text{C}} $ 50.00 $ {\text{G}}_{\text{n}} $ 100.00 $ {\text{S}}^{\text{T}} $ 40.00 $ {\text{G}}_{\text{s}} $ 125.00 $ {\text{S}}^{\text{L}} $ 10.00 $ {\text{G}}_{\text{t}} $ 125.00 Notes: $ {\text{X}}^{\text{T}} $, $ {\text{X}}^{\text{C}} $, $ {\text{Y}}^{\text{T}} $ and $ {\text{Y}}^{\text{C}} $ are the longitudinal tensile strength, longitudinal compressive strength, transverse tensile strength and transverse compressive strength; $ {\text{S}}^{\text{T}} $ and $ {\text{S}}^{\text{L}} $ are the transverse and longitudinal shear strength; $ {\text{t}}_{\text{n}}^{\text{0}} $, $ {\text{t}}_{\text{s}}^{\text{0}} $ and $ {\text{t}}_{\text{t}}^{\text{0}} $ represent the peak values of the contact stress component in the normal (n), the first (s) and the second (t) direction; $ {\text{G}}_{\text{n}} $, $ {\text{G}}_{\text{s}} $ and $ {\text{G}}_{\text{t}} $ refer to the work done by the traction and its conjugate displacement in the normal, the first, and the second shear directions, respectively. 表 3 试验数据库具体细节参数及FRP抗剪贡献
Table 3. Detailed parameters and FRP shear contribution of the test database
Reference FRP wrapping method
and layerShear
span ratioStructure size
H×L×D/mmExperimental
result/kNACI[22]
result/kNProposed formula
result/kNShen[15] Fully 2.0 layer 1.60 1600×1000×120 34.10 77.24 62.20 Antoniades[36] Fully 1.0 layer 1.00 1200×1200×100 63.40 120.38 64.63 Antoniades[37] Fully 1.0 layer 1.50 1800×1200×100 48.40 120.38 48.15 Woods[21] Two-sides 3.0 layer 1.20 1800×1500×100 292.00 619.34 322.06 Woods[21] Two-sides 3.0 layer 0.85 1800×2100×140 490.00 1213.91 595.38 Woods[35] Two-sides 3.0 layer 0.65 1800×2750×180 980.00 1513.95 896.26 El-Sokkary[14] Horizontal 1.0 layer 0.87 1045×1200×80 47.00 200.93 51.07 Shen[15] Horizontal 2.0 layer 1.60 1600×1000×120 42.20 67.10 44.76 Altin[32] Horizontal 1.0 layer 1.50 1500×1000×100 100.00 57.12 90.48 -
[1] 万怡秀, 徐自国, 纪晓东, 等. 拉压变轴力下小剪跨比预应力混凝土墙往复受剪试验研究[J]. 建筑结构学报, 2022, 43(6):219-232.WAN Yixiu, XU Ziguo, JI Xiaodong, et al. Experimental study on cyclic shear behavior of low-aspect-ratio prestressed concrete walls under variable axial tension-compression forces[J]. Journal of Building Structures,2022,43(6):219-232(in Chinese). [2] 刘力平, 张耀, 李伟朋, 等. 高层剪力墙结构内置型钢加固方法研究及有限元分析[J]. 建筑结构, 2021, 51(S2):1321-1328.LIU Liping, ZHANG Yao, LI Weipeng, et al. Method reserch and FEM analysis of reinforced shear wall by embedded section steel in tall building with shear wall structure[J]. Building Structure,2021,51(S2):1321-1328(in Chinese). [3] 封伟, 任宜春. 工字型钢筋混凝土剪力墙的抗震性能分析[J]. 工程建设, 2021, 53(10):7-13+31. doi: 10.13402/j.gcjs.2021.10.129FENG Wei, REN yichun. Seismic performance analysis of I-shaped reinforced concrete shear wall[J]. Engineering Construction,2021,53(10):7-13+31(in Chinese). doi: 10.13402/j.gcjs.2021.10.129 [4] 廖维张, 张春磊, 贾天宇, 等. 预应力高强钢绞线网-聚合物砂浆加固剪力墙抗震性能试验研究[J]. 建筑结构学报, 2017, 38(6):70-77. doi: 10.14006/j.jzjgxb.2017.06.008LIAO Weizhang, ZHANG Chunlei, JIA Tianyu, et al. Experimental investigation on seismic behavior of shear wall retrofitted with pre-stressed steel wire mesh and polymer mortar[J]. Journal of Building Structures,2017,38(6):70-77(in Chinese). doi: 10.14006/j.jzjgxb.2017.06.008 [5] 曲哲, 张令心. 日本钢筋混凝土结构抗震加固技术现状与发展趋势[J]. 地震工程与工程振动, 2013, 33(4):61-74. doi: 10.13197/j.eeev.2013.04.63.quzh.019QU Zhe, ZHANG Lingxin. State of the art and development tendency of seismic retrofit for reinforced concrete structures in Japan[J]. Earthquake Engineering and Engineering Dynamics,2013,33(4):61-74(in Chinese). doi: 10.13197/j.eeev.2013.04.63.quzh.019 [6] 田时雨, 任凤鸣, 伍峻磊, 等. FRP约束型钢混凝土柱-RC环梁节点震后轴压性能评估[J]. 复合材料学报复合材料学报, 2022, 39(11):5343-5354.TIAN Shiyu, REN Fengming, WU Junlei, et al. Evaluation of axial compressive performance of FRP-confined steel-reinforced concrete column-to-RC ring beam joint with seismic damage[J]. Acta Materiae Compositae Sinica,2022,39(11):5343-5354(in Chinese). [7] 白玉磊, 孙鹏轩, 贾俊峰. PET FRP约束矩形RC柱中纵筋屈曲行为[J]. 复合材料学报, 2022, 39(10):1-14.BAI Yulei, SUN Pengxuan, JIA Junfeng. Buckling behavior of steel rebars in PET FRP-confined rectangular RC columns[J]. Acta Materiae Compositae Sinica,2022,39(10):1-14(in Chinese). [8] LOMBARD JC. Seismic strengthening and repair of reinforced concrete shear walls using externally bonded carbon fibre tow sheets [D]. Carleton University, 1999. [9] WEI H, WU Z, GUO X, et al. Experimental study on partially deteriorated strength concrete columns confined with CFRP[J]. Engineering Structures,2009,31(10):2495-2505. doi: 10.1016/j.engstruct.2009.05.006 [10] EL-SOKKARY H. Seismic Retrofit of Reinforced Concrete Shear Walls using Fibre Reinforced Polymer Composites [J]. Civil Engineering, 2012. [11] HATAMI F, GHAMARI A, RAHA A. Investigating the properties of steel shear walls reinforced with Carbon Fiber Polymers (CFRP)[J]. Journal of Constructional Steel Research,2011:70. [12] MEFTAH SA, TOUNSI A, MEGUENI A, et al. Lateral stiffness and vibration characteristics of RC shear walls bonded with thin composite plates[J]. Composite Structures,2006,73(1):110-119. doi: 10.1016/j.compstruct.2005.01.036 [13] MEFTAH SA, YEGHNEM R, TOUNSI A, et al. Seismic behavior of RC coupled shear walls repaired with CFRP laminates having variable fibers spacing[J]. Construction & Building Materials,2007,21(8):1661-1671. [14] EL-SOKKARY H, GALAL K. Seismic Behaviour Of Frp-strengthened Rc Shear Walls[J]. Journal of Composites for Construction,2013,31(9):603-613. [15] SHEN D, YANG Q, JIAO Y, et al. Experimental investigations on reinforced concrete shear walls strengthened with basalt fiber-reinforced polymers under cyclic load[J]. Construction and Building Materials,2017,136:217-229. doi: 10.1016/j.conbuildmat.2016.12.102 [16] DELNAVAZ A, HAMIDNIA M. Analytical investigation on shape configuration of CFRP strips on lateral loading capacity of strengthened RC shear wall[J]. Structural Concrete,2016,17(6):1059-1070. doi: 10.1002/suco.201500196 [17] 李兵, 李宏男. 不同剪跨比钢筋混凝土剪力墙拟静力试验研究[J]. 工业建筑, 2010, 40(9):32-36. doi: 10.13204/j.gyjz2010.09.009LI Bing, LI Hongnan. Research on quasi-static test of reinforced concrete shear walls with different shear-span ratio[J]. Industrial Construction,2010,40(9):32-36(in Chinese). doi: 10.13204/j.gyjz2010.09.009 [18] MIAO L, JIN L, LI D, et al. Effect of shear-span ratio and vertical reinforcement ratio on the failure of geometrical-similar RC shear walls[J]. Engineering Failure Analysis,2022:106407. [19] SALONIKIOS TN, KAPPOS AJ, TEGOS IA, et al. Cyclic load behavior of low-slenderness R/C walls: Design basis and test results[J]. ACI Structural Journal,1999,96(4):649-660. [20] 曾洪超. FRP加固混凝土竖向构件的抗震性能研究 [D]. 北京: 北京工业大学, 2010.ZENG Hongchao. Study on seismic performance of rc vertical components strengthened with frp [D]. Beijing: Beijing University Of Technology, 2010(in Chinese). [21] WOODS JE, LAU DT, CRUZ-NOGUEZ CA. In-plane seismic strengthening of nonductile reinforced concrete shear walls using externally bonded CFRP sheets[J]. Journal of Composites for Construction,2016,20(6):04016052. doi: 10.1061/(ASCE)CC.1943-5614.0000705 [22] American Concrete Institute. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures: ACI 440.2 R-17 [S]. Farmington Hills: American Concrete Institute, 2017. [23] Canadian Standard Association. CSA–S806–12 Design and construction of building structures with fiber-reinforced polymers [S]. Ontario, Canada: Canadian Standards Association International, 2017. [24] 中华人民共和国住房和城乡建设部. 纤维增强复合材料建设工程应用技术规范: GB 50608−2020 [S]. 北京: 中国标准出版社, 2010.Ministry of Housing and Urban-Rural Development of People’s Republic of China. Technical standard for fiber reinforced polymer (FRP) in construction: GB 50608−2020 [S]. Beijing: China Standards Press, 2020(in Chinese). [25] LEE J, FENVES GL. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics,1998,124(8):892-900. doi: 10.1061/(ASCE)0733-9399(1998)124:8(892) [26] 张帅, 金浏, 李冬, 等. 结构尺寸对钢筋混凝土短柱抗震性能影响: 细观分析[J]. 工程力学, 2018, 35(12):164-174.ZHANG Shuai, JIN Liu, LI Dong, et al. Effect of structural size on seismic performance of reinforced concrete short columns- a meso-scale study[J]. Engineering mechanics,2018,35(12):164-174(in Chinese). [27] TENG JG, CHEN JF, SMITH ST, et al. Behaviour and strength of FRP-strengthened RC structures: a state-of-the-art review[J]. Proceedings of the institution of civil engineers-structures and buildings,2003,156(1):51-62. doi: 10.1680/stbu.2003.156.1.51 [28] BSISU KAD, HUSSEIN HH, SARGAND SM. The use of Hashin damage criteria, CFRP–concrete interface and concrete damage plasticity models in 3 D finite element modeling of retrofitted reinforced concrete beams with CFRP sheets[J]. Arabian Journal for Science and Engineering,2017,42(3):1171-1184. doi: 10.1007/s13369-016-2356-3 [29] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics,1980,47(2):329-334. doi: 10.1115/1.3153664 [30] CAMANHO PP, DÁVILA CG. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials [R]. 2002. [31] BENZEGGAGH ML, KENANE M. Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus[J]. Composites Science and Technology,1996,56(4):439-449. doi: 10.1016/0266-3538(96)00005-X [32] ALTIN S, ANIL O, KOPRAMAN Y, et al. Hysteretic behavior of RC shear walls strengthened with CFRP strips[J]. Composites Part B Engineering,2013,44(1):321-329. doi: 10.1016/j.compositesb.2012.05.009 [33] SARGAND SM, BALL R. Special Students Study: Experimental Analysis of Composite Reinforced Bridge: Field Study [M]. Department of Civil Engineering, Ohio University, 2000. [34] 中华人民共和国住房和城乡建设部. GB 50010-2010混凝土结构设计规范 [S]. 北京, 中国建筑工业出版社, 2015.China’s Ministry of Housing and Urban-Rural Construction (MHURC). GB 50010-2010 Code for design of concrete structures [S]. Beijing: China Architecture and Building Press, 2015(in Chinese). [35] WOODS JE. Advances in Retrofit and Testing of Reinforced Concrete Shear Walls: Part 1-Seismic Retrofit of Deficient Walls with Fibre-Reinforced Polymer Sheets Part 2-Building Scale Performance Evaluation using Hybrid Simulation [D]. Carleton University, 2019. [36] ANTONIADES KK, SALONIKIOS TN, KAPPOS AJ. Cyclic tests on seismically damaged reinforced concrete wall strengthened using fiber-reinforced polymer reinforcement[J]. ACI Structural Journal,2003,100(4):510-518. [37] ANTONIADES KK, SALONIKIOS TN, KAPPOS AJ. Tests on seismically damaged reinforced concrete walls repaired and strengthened using fiber-reinforced polymers[J]. Journal of Composites for Construction,2005,9(3):236-246. doi: 10.1061/(ASCE)1090-0268(2005)9:3(236) -

计量
- 文章访问数: 107
- HTML全文浏览量: 104
- 被引次数: 0