留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

污泥基生物炭负载纳米零价铁去除Cr(VI)的性能与机制

曾涛涛 农海杜 沙海超 陈胜兵 张晓玲 刘金香

曾涛涛, 农海杜, 沙海超, 等. 污泥基生物炭负载纳米零价铁去除Cr(VI)的性能与机制[J]. 复合材料学报, 2022, 40(0): 1-13
引用本文: 曾涛涛, 农海杜, 沙海超, 等. 污泥基生物炭负载纳米零价铁去除Cr(VI)的性能与机制[J]. 复合材料学报, 2022, 40(0): 1-13
Taotao ZENG, Haidu NONG, Haichao SHA, Shengbing CHEN, Xiaoling ZHANG, Jinxiang LIU. Performance and mechanism of Cr(VI) removal by sludge-derived biochar loaded with nanoscale zero-valent iron[J]. Acta Materiae Compositae Sinica.
Citation: Taotao ZENG, Haidu NONG, Haichao SHA, Shengbing CHEN, Xiaoling ZHANG, Jinxiang LIU. Performance and mechanism of Cr(VI) removal by sludge-derived biochar loaded with nanoscale zero-valent iron[J]. Acta Materiae Compositae Sinica.

污泥基生物炭负载纳米零价铁去除Cr(VI)的性能与机制

基金项目: 国家自然科学基金项目(52170164);湖南省教育厅创新平台开放基金项目(19K081)
详细信息
    通讯作者:

    刘金香,博士,教授,硕士生导师,研究方向为水处理理论与技术及污染控制  E-mail:cafardworm@163.com

  • 中图分类号: X703

Performance and mechanism of Cr(VI) removal by sludge-derived biochar loaded with nanoscale zero-valent iron

  • 摘要: 针对电镀、冶金、印染等行业产生的含铬废水所导致的环境污染难题,以城市污泥热解获得的污泥基生物炭(SB)为载体,制备了污泥基生物炭负载纳米零价铁(nZVI-SB)材料用于去除水中的Cr(VI),探究了铁炭质量比、初始pH值、投加量、温度等因素对去除Cr(VI)的影响。通过扫描电镜-能谱分析(SEM-EDS)、X衍射分析仪(XRD)和X射线光电子能谱(XPS)等手段对nZVI-SB去除Cr(VI)的机制进行分析。结果表明,nZVI-SB对Cr(VI)废水具有较好的去除能力。在投加量0.5 g/L、初始pH值2、温度40℃条件下,nZVI-SB(1:1)对Cr(VI)吸附量最大为150.60 mg/g。Cr(VI)去除过程可通过Langmuir吸附等温式与准二级动力学方程进行拟合。nZVI-SB对Cr(VI)去除机制主要包括吸附、还原和共沉淀。本研究表明污泥基生物炭与纳米零价铁可以协同发挥除Cr(VI)作用。

     

  • 图  1  SB (a)和污泥基生物炭负载纳米零价铁(nZVI-SB) (1:1)处理Cr(VI)前(b)、后(c)的SEM-EDS图

    Figure  1.  SEM-EDS images of SB (a) and sludge-derived biochar loaded with nanoscale zero-valent iron (nZVI-SB) (1:1) before (b) and after (c) treatment of Cr(VI)

    图  3  SB和nZVI-SB(1:1)的N2吸附-脱附等温线(a)和孔径分布(b)

    Figure  3.  The N2 adsorption-desorption isotherms (a) and pore size distributions (b) of SB and nZVI-SB (1:1)

    图  2  nZVI-SB(1:1)处理Cr(VI)前(a)、后(b)的TEM图

    Figure  2.  TEM images of nZVI-SB(1:1) before (a) and after (b) treatment of Cr(VI)

    图  4  SB和nZVI-SB(1:1)去除Cr(VI)前、后的XRD图(a)以及nZVI-SB(1:1)的XPS全谱图(b)

    Figure  4.  XRD patterns of SB and nZVI-SB(1:1) before and after adsorption of Cr(VI) (a) and XPS full spectrum of nZVI-SB(1:1) (b)

    图  5  不同Fe:C质量比对Cr(VI)去除的影响

    Figure  5.  The effect of Fe:C mass ratio on Cr(VI) removal

    图  6  初始pH对nZVI-SB(1:1)去除Cr(Ⅵ)的影响

    Figure  6.  The effect of initial pH on the removal of Cr(Ⅵ) by nZVI-SB(1:1)

    图  7  不同pH值下Cr(VI)形态分布曲线图

    Figure  7.  Cr(VI) form distribution curve under different pH values

    图  8  投加量对nZVI-SB(1:1)去除Cr (VI)的影响

    Figure  8.  The influence of dosage on the removal of Cr (VI) by nZVI-SB(1:1)

    图  9  吸附时间对nZVI-SB(1:1)去除Cr(Ⅵ)的影响(a);准一级(b)、准二级(c)动力学拟合曲线和颗粒内扩散拟合曲线(d)

    Figure  9.  The effect of adsorption time on the removal of Cr(Ⅵ) by nZVI-SB(1:1) (a); Quasi-first (b), quasi-second (c) kinetic fitting curves and intra-particle diffusion fitting curve (d)

    图  10  温度对nZVI-SB(1:1)去除Cr(Ⅵ)的影响(a);Langmuir吸附等温线(b)和Freundlich吸附等温线(c)

    Figure  10.  The influence of temperature on the removal of Cr(Ⅵ) by nZVI-SB(1:1) (a); Langmuir adsorption isotherm (b) and Freundlich adsorption isotherm (c)

    图  11  nZVI-SB(1:1)的XPS图:(a)C 1s精细谱;(b)O 1s精细谱;(c)Fe 2p精细谱;(d)Cr 2p精细谱

    Figure  11.  XPS spectra of nZVI-SB(1:1): (a) C 1s spectrum; (b) O 1s spectrum; (c) Fe 2p spectrum; (d) Cr 2p spectrum

    图  12  nZVI-SB(1:1)对Cr(VI)去除机制图[15]

    Figure  12.  Schematic of Cr(VI) removal mechanisms by nZVI-SB(1:1)

    图  13  nZVI-SB(1:1)洗脱再生试验

    Figure  13.  nZVI-SB(1:1) regeneration test

    表  1  污泥及污泥基生物炭消解液中重金属浓度/(mg·L−1)

    Table  1.   Heavy metal concentrations in digestion solution of sludge and sludge-based biochar /(mg·L−1)

    sampleZnPbCuBaCdCr
    sludge5.280.342.377.320.060.14
    SB7.810.513.018.670.090.13
    Specified value in GB 5085.3—2007[18]1005100100115
    下载: 导出CSV

    表  2  SB和nZVI-SB(1∶4、1∶2、1∶1、2∶1)的元素组成

    Table  2.   Elemental composition of SB and nZVI-SB (1∶4, 1∶2, 1∶1, 2∶1)

    Mass percentage /wt%
    CNONaMgAlSiKCaCrFe
    SB40.488.4634.940.190.393.266.430.883.050.331.59
    1:436.637.5633.050.220.480.630.760.280.300.2219.87
    1:230.416.4127.550.180.360.510.620.230.240.1833.31
    1:123.923.1121.450.140.270.280.350.190.210.1649.92
    2:116.481.7614.450.060.130.110.160.080.080.0666.63
    下载: 导出CSV

    表  3  nZVI-SB(1:1)对Cr(Ⅵ)的吸附动力学参数

    Table  3.   Adsorption kinetic parameters of Cr(VI) adsorption by nZVI-SB(1:1)

    Quasi-first order dynamics modelQuasi-two-stage dynamics model
    qe/(mg·g−1)K1/(min−1)R2qe/(mg·g−1)K2/(min−1)R2
    38.570.01130.855103.070.00050.999
    Intraparticle diffusion model
    Kd1/(mg·(m·min0.5)−1)C1R2Kd2/(mg·(m·min0.5)−1)C2R2
    5.85822.7310.9710.03898.5510.946
    Notes: qe is equilibrium adsorption capacity; K1 is the quasi-first order adsorption rate constant; K2 is the quasi-second order adsorption rate constant; R2 is linear correlation coefficient; Kd1 and Kd2 are particle diffusion constants.
    下载: 导出CSV

    表  4  nZVI-SB(1:1)对Cr(Ⅵ)的吸附等温线拟合参数

    Table  4.   Adsorption isotherm fitting parameters of Cr(VI) by nZVI-SB(1:1)

    Temperature/℃LangmuirFreundlich
    qmax(mg·g−1)KLR2KFnR2
    20141.550.4570.99998.488.930.821
    30143.840.3380.999104.739.990.744
    40151.230.4330.999106.389.070.766
    Notes: qm is the maximum adsorption capacity; KL is the adsorption equilibrium constant of the Langmuir model; KF is the adsorption equilibrium constant of Freundlich model; 1/n is an empirical parameter related to the adsorption strength; R2 is linear correlation coefficient.
    下载: 导出CSV

    表  5  nZVI-SB(1:1)和其他吸附剂对Cr(VI)的吸附能力比较

    Table  5.   Comparison of the adsorption capacity of Cr(VI) by nZVI-SB (1:1) and other adsorbents

    AdsorbentpHTemperature/℃Adsorption capacity/(mg·g−1)References
    Sludge biochar(500℃)7257.93[13]
    bentonite-supported nanoscale zero-valent iron (B-nZVI)52539.48[23]
    Ficus carica biosorbent33019.68[36]
    Magnetic nanoparticle-Phosphorene-Titanium nano tubes(MNP-PN-TNT)92535.00[2]
    nanoscale zero-valent iron grafted on acid-activated attapulgite (A-nZVI)7274.94[31]
    HNO3 modified quinoa biochar4/55.85[37]
    ZnO modified hyacinth biochar/2543.48[38]
    halloysite nanotubes/ploy composites225855.66[39]
    nZVI-SB(1:1)240150.60This study
    下载: 导出CSV

    表  6  nZVI-SB(1:1)去除Cr(VI)前、后的C 1s、O 1s、Fe 2p 和 Cr 2p XPS光谱的成分和相应的相对百分比

    Table  6.   Composition and relative percents of C 1s, O 1s, Fe 2p and Cr 2p XPS spectra before and after Cr(VI) removal by nZVI-SB(1:1)

    ComponentsRelative percentage/%Binding energy/eV
    BeforeAfterBeforeAfter
    C 1sC−C58.9959.78284.64284.69
    C−O26.2424.00286.06286.27
    C=O14.7716.22288.54288. 72
    O 1sFe−O32.0730.05529.95529.99
    C−O29.9457.76531.17531.40
    C=O37.9912.19532.04532.58
    Fe 2pFe00.360706.7-
    Fe(II)70.3167.96711.10/724.39711.11/724.45
    Fe(III)29.3332.04714.41/728.15714.44/728.55
    Cr 2pCr(III)-84.39-577.01/586.85
    Cr(VI)-15.61-580.40/590.28
    下载: 导出CSV
  • [1] GAO Q Y, LIN D G, FAN Y J, et al. Visible light induced photocatalytic reduction of Cr(VI) by self-assembled and amorphous Fe-2MI[J]. Chemical Engineering Journal,2019,374:10-19. doi: 10.1016/j.cej.2019.05.151
    [2] LIN Y J, CHEN J J, CAO W Z, et al. Novel materials for Cr(VI) adsorption by magnetic titanium nanotubes coated phosphorene[J]. Journal of Molecular Liquids,2019,287:110826. doi: 10.1016/j.molliq.2019.04.103
    [3] GHADIKOLAEI N F, KOWSARI E, BALOU S, et al. Preparation of porous biomass-derived hydrothermal carbon modified with terminal amino hyperbranched polymer for prominent Cr(VI) removal from water[J]. Bioresource Technology,2019,288:121545. doi: 10.1016/j.biortech.2019.121545
    [4] ZHANG W Y, QIAN L B, OUYANG D, et al. Effective removal of Cr(VI) by attapulgite-supported nanoscale zero-valent iron from aqueous solution: Enhanced adsorption and crystallization[J]. Chemosphere,2019,221:683-692. doi: 10.1016/j.chemosphere.2019.01.070
    [5] 孙建德. 含铬废水的处理现状[J]. 湖南有色金属, 2013, 29(5):59-62. doi: 10.3969/j.issn.1003-5540.2013.05.017

    SUN J D. Current situation on the treatment for chromium-containing wastewater[J]. Hunan Nonferrous Metals,2013,29(5):59-62(in Chinese). doi: 10.3969/j.issn.1003-5540.2013.05.017
    [6] 秦泽敏, 董黎明, 刘平, 等. 零价纳米铁吸附去除水中六价铬的研究[J]. 中国环境科学, 2014, 34(12):3106-3111.

    QIN Z M, DONG L M, LIU P, et al. Removal Cr6+ from water using nanoscale zero-valent iron[J]. China Environmental Science,2014,34(12):3106-3111(in Chinese).
    [7] GUAN X H, SUN Y K, QIN H J, et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994-2014)[J]. Water Research,2015,75:224-248. doi: 10.1016/j.watres.2015.02.034
    [8] SHI L N, ZHANG X, CHEN Z L. Removal of Chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron[J]. Water Research,2011,45(2):886-892. doi: 10.1016/j.watres.2010.09.025
    [9] PETALA E, DIMOS K, DOUVALIS A, et al. Nanoscale zero-valent iron supported on mesoporous silica: Characterization and reactivity for Cr(VI) removal from aqueous solution[J]. Journal of Hazardous Materials,2013,261:295-306. doi: 10.1016/j.jhazmat.2013.07.046
    [10] ZHU H J, JIA Y F, WU X, et al. Removal of arsenic from water by supported nano zero-valent iron on activated carbon[J]. Journal of Hazardous Materials,2009,172(2-3):1591-1596. doi: 10.1016/j.jhazmat.2009.08.031
    [11] SU H J, FANG Z Q, TSANG P E, et al. Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles[J]. Journal of Hazardous Materials,2016,318:533-540. doi: 10.1016/j.jhazmat.2016.07.039
    [12] 刘剑, 黄莉, 彭钢, 等. 颗粒活性炭载纳米零价铁去除水中的Cr(Ⅵ)[J]. 过程工程学报, 2019, 19(4):714-720.

    LIU J, HUANG L, PENG G, et al. Removal of Cr(VI) from water by granular activated carbon supported nanoscale zero-valent iron[J]. The Chinese Journal of Process Engineering,2019,19(4):714-720(in Chinese).
    [13] 陈林, 平巍, 闫彬, 等. 不同制备温度下污泥生物炭对Cr(Ⅵ)的吸附特性[J]. 环境工程, 2020, 38(8):119-124.

    CHEN L, PING W, YAN B, et al. Adsorption characteristics of Cr(Ⅵ) by sludge biochar under different pyrolysis temperatures[J]. Environmental Engineering,2020,38(8):119-124(in Chinese).
    [14] 莫官海, 谢水波, 曾涛涛, 等. 污泥基生物炭处理酸性含U(Ⅵ)废水的效能与机理[J]. 化工学报, 2020, 71(5):2352-2362.

    MO G H, XIE S B, ZENG T T, et al. The efficiency and mechanism of U(VI) removal from acidic wastewater by sewage sludge-derived biochar[J]. CIESC Journal,2020,71(5):2352-2362(in Chinese).
    [15] CHEN X, FAN G J, LI H B, et al. Nanoscale zero-valent iron particles supported on sludge-based biochar for the removal of chromium (VI) from aqueous system[J]. Environmental Science and Pollution Research,2021,29(3):3853-3863.
    [16] ZHOU M, ZHANG C G, YUAN Y F, et al. Pinewood outperformed bamboo as feedstock to prepare biochar-supported zero-valent iron for Cr6+ reduction[J]. Environmental Research,2020,187:109695. doi: 10.1016/j.envres.2020.109695
    [17] DIAO Z H, DU J J, JIANG D, et al. Insights into the simultaneous removal of Cr6+ and Pb2+ by a novel sewage sludge-derived biochar immobilized nanoscale zero valent iron: Coexistence effect and mechanism[J]. Science of the Total Environment,2018,642:505-515. doi: 10.1016/j.scitotenv.2018.06.093
    [18] 危险废物鉴别标准 浸出毒性鉴别: GB 5085.3-2007 [S]. 北京: 中国环境科学出版社. 2007.

    Identification standards for hazardous wastes Identification for extraction toxicity: GB 5085.3-2007 [S]. Beijing: China Environmental Science Press, 2007(in Chinese).
    [19] ZHANG Y T, JIAO X Q, LIU N, et al. Enhanced removal of aqueous Cr(VI) by a green synthesized nanoscale zero-valent iron supported on oak wood biochar[J]. Chemosphere,2020,245:125542. doi: 10.1016/j.chemosphere.2019.125542
    [20] MA F F, PHILIPPE B, ZHAO B W, et al. Simultaneous adsorption and reduction of hexavalent chromium on biochar-supported nanoscale zero-valent iron (nZVI) in aqueous solution[J]. Water Science and Technology,2020,82(7):1339-1349. doi: 10.2166/wst.2020.392
    [21] CHOI H, AL-ABED S R, AGARWAL S, et al. Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs[J]. Chem Mat,2008,20(11):3649-3655. doi: 10.1021/cm8003613
    [22] PHOUNGTHONG K, ZHANG H, SHAO L M, et al. Leaching characteristics and phytotoxic effects of sewage sludge biochar[J]. Journal of Material Cycles and Waste Management,2018,20(4):2089-2099. doi: 10.1007/s10163-018-0763-0
    [23] DIAO Z H, XU X R, JIANG D, et al. Bentonite-supported nanoscale zero-valent iron/persulfate system for the simultaneous removal of Cr(VI) and phenol from aqueous solutions[J]. Chemical Engineering Journal,2016,302:213-222. doi: 10.1016/j.cej.2016.05.062
    [24] SHI L N, DU J H, CHEN Z L, et al. Functional kaolinite supported Fe/Ni nanoparticles for simultaneous catalytic remediation of mixed contaminants (lead and nitrate) from wastewater[J]. Journal of Colloid and Interface Science,2014,428:302-307. doi: 10.1016/j.jcis.2014.04.059
    [25] YI Y, WANG X Y, MA J, et al. An efficient Egeria najas-derived biochar supported nZVI composite for Cr (VI) removal: Characterization and mechanism investigation based on visual MINTEQ model[J]. Environmental Research,2020,189:109912. doi: 10.1016/j.envres.2020.109912
    [26] DONG H R, DENG J M, XIE Y K, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution[J]. Journal of Hazardous Materials,2017,332:79-86. doi: 10.1016/j.jhazmat.2017.03.002
    [27] FANG Y, WU X G, DAI M, et al. The sequestration of aqueous Cr(VI) by zero valent iron-based materials: From synthesis to practical application[J]. Journal of Cleaner Production,2021,312:127678. doi: 10.1016/j.jclepro.2021.127678
    [28] DONG H R, ZHANG C, HOU K J, et al. Removal of trichloroethylene by biochar supported nanoscale zero-valent iron in aqueous solution[J]. Separation and Purification Technology,2017,188:188-196. doi: 10.1016/j.seppur.2017.07.033
    [29] HUANG L H, ZHOU S J, JIN F, et al. Characterization and mechanism analysis of activated carbon fiber felt-stabilized nanoscale zero-valent iron for the removal of Cr(VI) from aqueous solution[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2014,447:59-66.
    [30] CHOI K, LEE W. Enhanced degradation of trichloroethylene in nano-scale zero-valent iron Fenton system with Cu(II)[J]. Journal of Hazardous Materials,2012,211:146-153.
    [31] QUAN G X, ZHANG J, GUO J, et al. Removal of Cr(VI) from aqueous solution by nanoscale zero-valent iron grafted on acid-activated attapulgite[J]. Water Air and Soil Pollution,2014,225(6):2195.
    [32] QIU Y, ZHANG Q, GAO B, et al. Removal mechanisms of Cr(VI) and Cr(III) by biochar supported nanosized zero-valent iron: Synergy of adsorption, reduction and transformation[J]. Environmental Pollution,2020,265:115018. doi: 10.1016/j.envpol.2020.115018
    [33] LIU L H, LIU X, WANG D Q, et al. Removal and reduction of Cr(VI) in simulated wastewater using magnetic biochar prepared by co-pyrolysis of nano-zero-valent iron and sewage sludge[J]. Journal of Cleaner Production,2020,257:120562. doi: 10.1016/j.jclepro.2020.120562
    [34] WANG H B, CAI J Y, LIAO Z W, et al. Black liquor as biomass feedstock to prepare zero-valent iron embedded biochar with red mud for Cr(VI) removal: Mechanisms insights and engineering practicality[J]. Bioresource Technology,2020,311:123553. doi: 10.1016/j.biortech.2020.123553
    [35] AWANG N A, SALLEH W N W, ISMAIL A F, et al. Adsorption behavior of chromium(VI) onto regenerated cellulose membrane[J]. Industrial & Engineering Chemistry Research,2019,58(2):720-728.
    [36] GUPTA V K, PATHANIA D, AGARWAL S, et al. Removal of Cr(VI) onto Ficus carica biosorbent from water[J]. Environmental Science and Pollution Research,2013,20(4):2632-2644. doi: 10.1007/s11356-012-1176-6
    [37] IMRAN M, KHAN Z U, IQBAL M M, et al. Effect of biochar modified with magnetite nanoparticles and HNO3 for efficient removal of Cr(VI) from contaminated water: A batch and column scale study[J]. Environmental Pollution,2020,261:114231. doi: 10.1016/j.envpol.2020.114231
    [38] YU J D, JIANG C Y, GUAN Q Q, et al. Enhanced removal of Cr(VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth[J]. Chemosphere,2018,195:632-640. doi: 10.1016/j.chemosphere.2017.12.128
    [39] 陈泽文, 周子晗, 吴美仪, 等. 埃洛石纳米管/聚间苯二胺复合材料去除Cr(Ⅵ)的性能[J]. 复合材料学报, 2020, 37(3):493-503.

    CHEN Z W, ZHOU Z H, WU M Y, et al. Adsorption properties of halloysite nanotubes/poly(m-phenylenediamine) composites for Cr(VI)[J]. Acta Materiae Compositae Sinica,2020,37(3):493-503(in Chinese).
    [40] 席冬冬, 李晓敏, 熊子璇, 等. 生物炭负载纳米零价铁对污染土壤中铜钴镍铬的协同去除[J]. 环境工程, 2020, 38(6):58-66.

    XI D D, LI X M, XIONG Z X, et al. Synergistic removal of Cu, Co, Ni and Cr from contaminated soil by biochar-supported nanoscale zero-valent iron[J]. Environmental Engineering,2020,38(6):58-66(in Chinese).
    [41] YOON I H, BANG S, CHANG J S, et al. Effects of pH and dissolved oxygen on Cr(VI) removal in Fe(0)/H2O systems[J]. Journal of Hazardous Materials,2011,186(1):855-862. doi: 10.1016/j.jhazmat.2010.11.074
    [42] WANG Z, CHEN G H, WANG X R, et al. Removal of hexavalent chromium by bentonite supported organosolv lignin -stabilized zero-valent iron nanoparticles from wastewater[J]. Journal of Cleaner Production,2020,267:122009. doi: 10.1016/j.jclepro.2020.122009
  • 加载中
计量
  • 文章访问数:  119
  • HTML全文浏览量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-10
  • 录用日期:  2022-03-13
  • 修回日期:  2022-03-08
  • 网络出版日期:  2022-04-01

目录

    /

    返回文章
    返回