留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔木炭/Fe3O4复合吸波材料的制备与性能

杨喜 曹敏 简煜 庞晓娜 李贤军

杨喜, 曹敏, 简煜, 等. 多孔木炭/Fe3O4复合吸波材料的制备与性能[J]. 复合材料学报, 2022, 39(10): 1-12 doi: 10.13801/j.cnki.fhclxb.20211105.001
引用本文: 杨喜, 曹敏, 简煜, 等. 多孔木炭/Fe3O4复合吸波材料的制备与性能[J]. 复合材料学报, 2022, 39(10): 1-12 doi: 10.13801/j.cnki.fhclxb.20211105.001
Xi YANG, Min CAO, Yu JIAN, Xiaona PANG, Xianjun LI. Preparation and microwave absorption properties of porous charcoal/ Fe3O4 composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 1-12. doi: 10.13801/j.cnki.fhclxb.20211105.001
Citation: Xi YANG, Min CAO, Yu JIAN, Xiaona PANG, Xianjun LI. Preparation and microwave absorption properties of porous charcoal/ Fe3O4 composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 1-12. doi: 10.13801/j.cnki.fhclxb.20211105.001

多孔木炭/Fe3O4复合吸波材料的制备与性能

doi: 10.13801/j.cnki.fhclxb.20211105.001
基金项目: 中南林科大人才启动基金(2018YJ033);湖南省教育厅科研项目(18B173)
详细信息
    通讯作者:

    李贤军,博士,教授,博士生导师,研究方向为木竹材功能改良、木竹生物质复合材料  E-mail: lxjmu@csuft.edu.cn

  • 中图分类号: TB332;S785

Preparation and microwave absorption properties of porous charcoal/ Fe3O4 composites

  • 摘要: 为了改善Fe3O4吸波材料密度大和吸波频带窄等问题,以马尾松木材为原料,采用去木质素及高温原位生长法制备了多孔木炭(WPC)/Fe3O4复合材料,通过变化碳化温度来调控复合材料的电磁特性与微波吸收性能。微观形貌、结构和电磁参数等结果表明:WPC/Fe3O4复合材料保有木材天然的三维孔结构,Fe3O4粒子均匀负载于多孔木炭的炭壁与孔道中;升高碳化温度(630~690℃)可增强材料的电导率与电磁衰减能力,但温度过高会引起材料阻抗失配。670℃制备的复合材料微波衰减能力强且阻抗匹配特性好,最小反射损耗为−49.5 dB,有效吸收频宽为6.24 GHz(9.04~15.28 GHz),主要衰减机制归结于复合材料的电导损耗、极化弛豫及介电与磁损耗的协同作用。WPC/Fe3O4复合材料优异的吸波性能在电磁波吸收领域具有良好前景,可促进速生木材的高值化与功能化应用。

     

  • 图  1  多孔木炭(WPC)/Fe3O4复合材料制备示意图

    Figure  1.  Schematic diagram of the preparation of wood-based porous charcoal (WPC) /Fe3O4 composites

    图  2  (a) WPC/Fe3O4复合材料的XRD图谱;(b) WPC/Fe3O4-石蜡复合材料的电导率;(c) WPC670/Fe3O4的热重曲线图

    Figure  2.  (a) XRD pattern of WPC/Fe3O4 composites; (b) Electric conductivity of WPC/Fe3O4-paraffin composites; (c) TG curve of WPC670/Fe3O4 composite

    图  3  WPC670/Fe3O4的XPS图谱

    Figure  3.  XPS patterns of WPC670/Fe3O4 composite

    图  4  WPC670/Fe3O4的SEM图像 ((a)~(c))与EDS图谱 ((d)~(f))

    Figure  4.  SEM images ((a)-(c)) and EDS spectrum ((d)-(f)) of WPC670/Fe3O4 composite

    图  5  WPCx/Fe3O4复合材料的电磁参数:复介电常数实部(a)、虚部(b)与介电损耗正切值(e);复磁导率实部(b)、虚部(c)、磁损耗正切值(f)

    Figure  5.  Electromagnetic parameters of WPCx/Fe3O4 composites: Real part (b), imaginary part (a) and tangent of complex permittivity (e); Real part (b), imaginary part (c) and tangent of permeability (f)

    图  6  WPCx/Fe3O4的反射损耗曲线与三维模拟图

    Figure  6.  Reflection loss curves and 3D diagram of WPCx/Fe3O4 composites

    RL—Reflection loss value; EAB—Effective absorption

    图  7  WPCx/Fe3O4复合材料的阻抗匹配(a)与衰减常数(b)

    Figure  7.  Impedance matching characteristics (a) and attenuation constant (b) of WPCx/Fe3O4 composites

    Z—Impedance matching; Zin—Input impedance of absorber; Z0—Free space impedance

    图  8  WPC670/Fe3O4 (a)与WPC670 (b)的Cole-Cole曲线

    Figure  8.  Cole-Cole curves of WPC670/Fe3O4 (a) and WPC670 (b)

    图  9  (a) WPCx/Fe3O4C0值;(b) WPC670/Fe3O4的四分之一波长模型

    Figure  9.  (a) C0 of WPCx/Fe3O4; (b) Model of 1/4 wavelength of WPC670/Fe3O4

    表  1  碳基吸波材料的性能对比

    Table  1.   Comparison of microwave absorption properties of carbon-based materials

    SamplesFiller content/wt%RL
    /dB
    Thickness
    /mm
    Effective absorption bandwidth/GHzRef.
    PC70−42.421.76[30]
    PFSL50−43.835.3[20]
    RHPC/Fe25−21.81.45.6[31]
    Fe3O4/rGO50−453[32]
    HPC/Co30−52.62.82.5[24]
    Co/C fiber33−3123.2[33]
    Ni(OH)2/BPC50−23.662[34]
    Fe3O4/WPC50−51.325.8[35]
    HCF@CZ-CNTs10−53.52.92.64[36]
    WPC670/Fe3O415−49.53.206.24 (9.04~15.28)This work
    Notes: PC—Porous carbon; PFLS—Pyrolytic functionalized loofah sponge; RHPC/Fe—Rice husk-based porous carbon/Fe; Fe3O4/rGO—Fe3O4/reduced graphene oxide; HPC/Co—Hierarchical porous carbon/Co; Co/C fiber—Co/carbon fiber; Ni(OH)2/BPC—Ni(OH)2/biomass porous carbon; Fe3O4/WPC—Fe3O4/walnut-based porous carbon; HCF@CZ-CNTs—Hierarchical carbon fiber coated with Co/C nano-dodecahedron particles where CNTs were anchored.
    下载: 导出CSV
  • [1] XU H L, YIN X W, ZHU M, et al. Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption[J]. ACS Applied Materials & Interfaces,2017,9(7):6332-6341. doi: 10.1021/acsami.6b15826
    [2] ZHANG N, HUANG Y, LIU X D, et al. High efficiency microwave absorption nanocomposites of multiple-phase core-shell CoNi alloy@C loaded on rGO conducting network[J]. Composites Part A: Applied Science and Manufacturing,2018,115:283-293. doi: 10.1016/j.compositesa.2018.10.012
    [3] LIU P B, GAO S, ZHANG G Z, et al. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption[J]. Advanced Functional Materials,2021,31(27):2102812. doi: 10.1002/adfm.202102812
    [4] ZHANG H X, SHI C, JIA Z R, et al. FeNi nanoparticles embedded reduced graphene/nitrogen-doped carbon composites towards the ultra-wideband electromagnetic wave absorption[J]. Journal of Colloid and Interface Science,2021,584:382-394. doi: 10.1016/j.jcis.2020.09.122
    [5] LIU X D, HUANG Y, DING L, et al. Synthesis of covalently bonded reduced graphene oxide-Fe3O4 nanocomposites for efficient electromagnetic wave absorption[J]. Journal of Materials Science & Technology,2021,72:93-103. doi: 10.1016/j.jmst.2020.09.012
    [6] 赵佳, 姚艳青, 杨煊赫, 等. 铁氧体及其复合吸波材料的研究进展[J]. 复合材料学报, 2020, 37(11):2684-2699.

    ZHAO Jia, YAO Yanqing, YANG Xuanhe, et al. Research progress of ferrite and its composite absorbing materials[J]. Acta Materiae Compositae Sinica,2020,37(11):2684-2699(in Chinese).
    [7] HUANG L, LI J J, WANG Z J, et al. Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane[J]. Carbon,2019,143:507-516. doi: 10.1016/j.carbon.2018.11.042
    [8] SHAO Y Q, LU W B, CHEN H, et al. Flexible ultra-thin Fe3O4/MnO2 coreshell decorated CNT composite with enhanced electromagnetic wave absorption performance[J]. Composites Part B: Engineering,2018,144:111-117. doi: 10.1016/j.compositesb.2018.02.015
    [9] LIU J L, LIANG H S, WU H J. Hierarchical flower-like Fe3O4/MoS2 composites for selective broadband electromagnetic wave absorption performance[J]. Composites Part A: Applied Science and Manufacturing,2020,130:105760. doi: 10.1016/j.compositesa.2019.105760
    [10] LI J S, XIE Y Z, LU W B, et al. Flexible electromagnetic wave absorbing composite based on 3D rGO-CNT-Fe3O4 ternary films[J]. Carbon,2018,129:76-84. doi: 10.1016/j.carbon.2017.11.094
    [11] ZHOU X F, ZHANG C H, ZHANG M, et al. Synthesis of Fe3O4/carbon foams composites with broadened bandwidth and excellent electromagnetic wave absorption performance[J]. Composites Part A: Applied Science and Manufacturing,2019,127:105627. doi: 10.1016/j.compositesa.2019.105627
    [12] WANG H S, SHI P P, RUI M, et al. The green synthesis rGO/Fe3O4/PANI nanocomposites for enhanced electromagnetic waves absorption[J]. Progress in Organic Coatings,2020,139:105476. doi: 10.1016/j.porgcoat.2019.105476
    [13] 李焕然, 马关胜, 杨智伟, 等. Fe3O4/CNTs@Cf 复合材料的制备及其吸波性能的研究[J]. 功能材料, 2021, 52(4):4023-4029. doi: 10.3969/j.issn.1001-9731.2021.04.005

    LI Huanran, MA Guansheng, YANG Zhiwei, et al. Preparation of Fe3O4/CNTs@Cf composite material and its microwave absorbing properties[J]. Functional Materials,2021,52(4):4023-4029(in Chinese). doi: 10.3969/j.issn.1001-9731.2021.04.005
    [14] XI J B, ZHOU E Z, LIU Y J, et al. Wood based straightway channel structure for high performance microwave absorption[J]. Carbon,2017,124:492-498. doi: 10.1016/j.carbon.2017.07.088
    [15] GUAN H, CHANG Z Y, WANG X Q. Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents[J]. ACS Nano,2018,12(10):10365-10373. doi: 10.1021/acsnano.8b05763
    [16] LI X J, CAO M, PANG X N, et al. Microtubule-based hierarchical porous carbon for lightweight and strong wideband microwave absorption[J]. Journal of Materials Chemistry C,2021,9(5):1649-1656. doi: 10.1039/D0TC04486E
    [17] WANG X X, MA T, SHU J C, et al. Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth[J]. Chemical Engineering Journal,2018,332:321-330. doi: 10.1016/j.cej.2017.09.101
    [18] GAO S, ZHANG G Z, WANG Y, et al. MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption[J]. Journal of Materials Science & Technology,2021,88:56-65. doi: 10.1016/j.jmst.2021.02.011
    [19] LI X J, HE L L, LI Y S, et al. Catalytic graphite mechanism during CVD diamond film on iron and cobalt alloys in CH4-H2 atmospheres[J]. Surface & Coatings Technology,2019,360:20-28. doi: 10.1016/j.surfcoat.2018.12.120
    [20] LIU L Y, SHUANG Y, HU H Y, et al. Lightweight and efficient microwave absorbing materials based on loofah sponge derived hierarchically porous carbons[J]. ACS Sustainable Chemistry & Engineering,2019,7(1):1228-1238. doi: 10.1021/acssuschemeng.8b04907
    [21] MA F W, MA D, WU G, et al. Construction of 3D nanostructure hierarchical porous graphitic carbons by charge-induced self-assembly and nanocrystal-assisted catalytic graphitization for supercapacitors[J]. Chemical Communications,2016,52(40):6673-6676. doi: 10.1039/C6CC02147F
    [22] 张艳. 生物质碳材料及生物质碳/磁性粒子复合材料的微波吸收性能研究[D]. 秦皇岛: 燕山大学, 2020.

    ZHANG Yan. Research on the microwave absorption properties of biomass carbon materials and biomass carbon/magnetic particle composite materials[D]. Qinhuangdao: Yanshan University, 2020 (in Chinese).
    [23] LIU P B, GAO S, WANG Y, et al. Magnetic porous N-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers[J]. Carbon,2021,173:655-666. doi: 10.1016/j.carbon.2020.11.043
    [24] LIU T S, LIU N, GAI L X, et al. Hierarchical carbonaceous composites with dispersed Co species prepared using the inherent nanostructural platform of biomass for enhanced microwave absorption[J]. Microporous and Mesoporous Materials,2020,302:110210. doi: 10.1016/j.micromeso.2020.110210
    [25] WANG C, HAN X J, XU P, et al. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material[J]. Applied Physics Letters,2011,98:072906. doi: 10.1063/1.3555436
    [26] YAN F, ZHANG S, ZHANG X, et al. Growth of CoFe2O4 hollow nanoparticles on graphene sheets for high-performance electromagnetic wave absorbers[J]. Journal of Materials Chemistry C,2018,6(47):12781-12787. doi: 10.1039/C8TC04222E
    [27] XU D W, XIONG X H, CHEN P, et al. Superior corrosion-resistant 3D porous magnetic graphene foam-ferrite nanocomposite with tunable electromagnetic wave absorption properties[J]. Journal of Magnetism and Magnetic Materials,2019,469:428-436. doi: 10.1016/j.jmmm.2018.09.019
    [28] NI S B, SUN X L, WANG X H, et al. Low temperature synthesis of Fe3O4 micro-spheres and its microwave absorption properties[J]. Materials Chemistry Physics,2010,124(1):353-358. doi: 10.1016/j.matchemphys.2010.06.046
    [29] CHENG Y, CAO J M, LI Y, et al. The out-side-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core-shell hybrids toward microwave absorption[J]. ACS Sustainable Chemistry & Engineering,2018,6(1):1427-1435. doi: 10.1021/acssuschemeng.7b03846
    [30] QIU X, WANG L X, ZHU H L, et al. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nanoporous carbon[J]. Nanoscale,2017,9(22):7408-7418. doi: 10.1039/C7NR02628E
    [31] FANG J Y, SHANG Y S, CHEN Z, et al. Rice husk-based hierarchically porous carbon and magnetic particles composites for highly efficient electromagnetic wave attenuation[J]. Journal of Materials Chemistry C,2017,5(19):4695-4705. doi: 10.1039/C7TC00987A
    [32] ZHU L Y, ZENG X J, LI X P, et al. Hydrothermal synthesis of magnetic Fe3O4/graphene composites with good electromagnetic microwave absorbing performances[J]. Journal of Magnetism & Magnetic Materials,2016,426:114-120. doi: 10.1016/j.jmmm.2016.11.063
    [33] LI W X, QI H X, GUO F, et al. Co nanoparticles supported on cotton-based carbon fibers: A novel broadband microwave absorbent[J]. Journal of Alloys and Compounds,2019,772:760-769. doi: 10.1016/j.jallcom.2018.09.075
    [34] WANG H Y, ZHANG Y L, WANG Q Y, et al. Biomass carbon derived from pine nut shells decorated with NiO nanoflakes for enhanced microwave absorption properties[J]. RSC Advances,2019,9(16):9126-9135. doi: 10.1039/C9RA00466A
    [35] GAO S S, AN Q D, XIAO Z Y, et al. Significant promotion of porous architecture and magnetic Fe3O4 NPs inside honey comb like carbonaceous composites for enhanced microwave absorption[J]. RSC Advance,2018,8(34):19011-19023. doi: 10.1039/c8ra00913a
    [36] YANG M L, YUAN Y, LI Y, et al. Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal-organic-framework[J]. Carbon,2020,161:517-527. doi: 10.1016/j.carbon.2020.01.073
    [37] LV H L, ZHANG H Q, ZHAO J, et al. Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures[J]. Nano Research,2016,9:1813-1822. doi: 10.1007/s12274-016-1074-1
    [38] WU Z C, TIAN K, HUANG T, et al. Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance[J]. ACS Applied Materials & Interfaces,2018,10(13):11108-11115. doi: 10.1021/acsami.7b17264
    [39] ZHANG X J, WANG G S, WEI Y Z, et al. Polymer-composite with high dielectric constant and enhanced absorption properties based on graphene-CuS nanocomposites and polyvinylidene fluoride[J]. Journal of Materials Chemistry A,2013,1(39):12115-12122. doi: 10.1039/c3ta12451g
    [40] 谢文瀚, 耿浩然, 柳扬, 等. MoS2/生物质碳复合材料的制备与吸波性能[J]. 复合材料学报, 2022, 39(5): 2238-2248.

    XIE Wenhan, GENG Haoran, LIU Yang, et al. Preparation and microwave absorbing properties of MoS2/biomass carbon composite [J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2238-2248(in Chinese).
    [41] TONG G X, LIU Y, CUI T T, et al. Tunable dielectric properties and excellent microwave absorbing properties of elliptical Fe3O4 nanorings[J]. Applied Physics Letters,2016,108(7):072905. doi: 10.1063/1.4942095
    [42] ZHAO B, SHAO G, FAN B B, et al. Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core-shell structure[J]. Physical Chemistry Chemical Physics,2015,17(4):2531-2539. doi: 10.1039/C4CP05031B
    [43] SHENG A, YANG Y Q, YAN D X, et al. Self-assembled reduced graphene oxide/nickel nanofibers with hierarchical core-shell structure for enhanced electromagnetic wave absorption[J]. Carbon,2020,167:530-540. doi: 10.1016/j.carbon.2020.05.107
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  55
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-24
  • 录用日期:  2021-10-28
  • 修回日期:  2021-09-30
  • 网络出版日期:  2021-11-08
  • 刊出日期:  2022-10-15

目录

    /

    返回文章
    返回