留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Zn2+/GaOOH纳米线的制备、表征与荧光性能

田俐 李岩 吴杰灵 刘强 易益涛 陈丽娟

田俐, 李岩, 吴杰灵, 等. Zn2+/GaOOH纳米线的制备、表征与荧光性能[J]. 复合材料学报, 2022, 39(7): 3347-3355. doi: 10.13801/j.cnki.fhclxb.20210818.001
引用本文: 田俐, 李岩, 吴杰灵, 等. Zn2+/GaOOH纳米线的制备、表征与荧光性能[J]. 复合材料学报, 2022, 39(7): 3347-3355. doi: 10.13801/j.cnki.fhclxb.20210818.001
TIAN Li, LI Yan, WU Jieling, et al. Preparation, characterization and photoluminescence of Zn2+/GaOOH nanowires[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3347-3355. doi: 10.13801/j.cnki.fhclxb.20210818.001
Citation: TIAN Li, LI Yan, WU Jieling, et al. Preparation, characterization and photoluminescence of Zn2+/GaOOH nanowires[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3347-3355. doi: 10.13801/j.cnki.fhclxb.20210818.001

Zn2+/GaOOH纳米线的制备、表征与荧光性能

doi: 10.13801/j.cnki.fhclxb.20210818.001
基金项目: 国家自然科学基金(51202066);教育部新世纪优秀人才支持计划项目(NCET-13-0784);湖南科技大学大学生科研创新计划(SRIP)项目(YZ2064)
详细信息
    通讯作者:

    田俐,博士,教授,博士生导师,研究方向为纳米光电材料 E-mail:849050031@qq.com

  • 中图分类号: TB383.1

Preparation, characterization and photoluminescence of Zn2+/GaOOH nanowires

  • 摘要: 羟基氧化镓(GaOOH)是一类宽带隙的半导体材料,在光催化降解有机染料、甲醇燃料电池、锂离子电池和生物光学成像方面有着潜在的应用前景。本研究以乙二胺四乙酸二钠(Na2Y)为模板剂,选取醋酸锌和硝酸镓为反应源,在简便易操作的水热条件下制备了Zn2+/GaOOH纳米线。采用XRD、SEM、HRTEM、EDS对材料进行了物相、成分、形貌与微结构表征。所制备的Zn2+/GaOOH纳米线长度达数十微米、直径约为100 nm,粗细均匀;Zn2+/GaOOH晶体呈现单晶的特性,纳米线沿<110>晶向生长。反应源及其摩尔量强烈地影响着产物的物相和形貌。当控制硝酸镓为1.5 mmol不变,Zn(Ac)2为1.0 mmol,Na2Y为0.5 mmol时,生成ZnGa2O4;Na2Y为1.0~1.7 mmol时,生成Zn2+/GaOOH纳米线。改变Zn(Ac)2为2.0 mmol,当Na2Y 为1.5 mmol时,得到尖晶石型结构的ZnGa2O4。详细探究了Zn∶Ga∶Y摩尔量比例影响产物的物相和形貌的规律,结果显示当控制Zn∶Ga∶Y=2∶3∶3时,可以得到相纯均一的Zn2+/GaOOH纳米线。荧光测试表明,紫外光照射Zn2+/GaOOH纳米线,在蓝绿光区域的469 nm 波长处有很强的发射峰,归因于阴离子空位缺陷激发重组后的发射。随着激发波长蓝移,其发射峰强度增加,214 nm时强度最大。相对于ZnGa2O4纳米颗粒而言,在226 nm激发波长下,Zn2+/GaOOH纳米线在469 nm 波长处有更高的发射峰强度,Zn2+/GaOOH纳米线比ZnGa2O4纳米颗粒具有更好的荧光性能。

     

  • 图  1  α-GaOOH的XRD图谱(a)和标准卡片(b)

    Figure  1.  XRD patterns of the α-GaOOH product (a) and standard card (b)

    图  2  Zn2+/GaOOH的EDS图谱

    Figure  2.  EDS spectrum of Zn2+/GaOOH

    图  3  Zn2+/GaOOH纳米线不同放大倍数的SEM图像:(a) 2000 倍;(b) 5000 倍;(c) 10000 倍;(d) 20000倍

    Figure  3.  SEM images of Zn2+/GaOOH nanowires with different magnification: (a) 2 000 times; (b) 5000 times; (c) 10000 times; (d) 20000 times

    图  4  Zn2+/GaOOH纳米线的TEM图像,显示了Zn2+/GaOOH单晶的特性和生长方向:(a)低倍;(b)单根Zn2+/GaOOH纳米线;(c)高倍放大的单根Zn2+/GaOOH纳米线;(d) HRTEM

    Figure  4.  TEM images of Zn2+/GaOOH nanowires, showing single crystalline character and growth orientation of the Zn2+/GaOOH nanowires:(a) Low-magnification; (b) Single Zn2+/GaOOH nanowire; (c) Higher-magnification Zn2+/GaOOH nanowire; (d) HRTEM

    图  5  Zn2+/GaOOH纳米线的FTIR图谱

    Figure  5.  FTIR spectrum of Zn2+/GaOOH nanowires

    图  6  反应体系中加入不同摩尔量的Zn(Ac)2所制得Zn2+/GaOOH的XRD图谱

    Figure  6.  XRD patterns of Zn2+/GaOOH prepared with different contents of Zn(Ac)2

    图  7  加入不同摩尔量的反应源Zn(Ac)2所制得Zn2+/GaOOH的SEM图像:(a) 0.8 mmol;(b) 2.0 mmol

    Figure  7.  SEM images of Zn2+/GaOOH obtained at different molar amounts of Zn(Ac)2: (a) 0.8 mmol; (b) 2.0 mmol

    图  8  反应体系中加入不同摩尔量的Na2Y所制备的Zn2+/GaOOH的XRD图谱

    Figure  8.  XRD patterns of Zn2+/GaOOH prepared with different contents of Na2Y

    图  9  反应体系中加入不同摩尔量的Na2Y所制得Zn2+/GaOOH的SEM图像:(a) 0.5 mmol;(b) 1.0 mmol;(c) 1.2 mmol;(d) 1.7 mmol

    Figure  9.  SEM images of Zn2+/GaOOH prepared with different contents of Na2Y: (a) 0.5 mmol;(b) 1.0 mmol;(c) 1.2 mmol;(d) 1.7 mmol

    图  10  反应源摩尔比对 Zn2+/GaOOH纳米线形貌和物相的影响

    Figure  10.  Effects of reactants mole ratios on the phase and morphology of Zn2+/GaOOH nanowires

    图  11  Zn2+/GaOOH在不同激发波长下的荧光发射图谱

    Figure  11.  Fluorescence emission spectra of Zn2+/GaOOH nanowires at different excitation wavelengths

    图  12  Zn2+/GaOOH (a)和ZnGa2O4 (b)的荧光发射图谱

    Figure  12.  Fluorescence emission spectra of Zn2+/GaOOH (a) and ZnGa2O4 (b)

  • [1] HUANG M H, WU Y Y, FERCK H, et al. Catalytic growth of zinc oxide nanowiresby vapor transport[J]. Advanced Materials,2001,13(2):113-116. doi: 10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
    [2] TIAN L, CHEN L. Liquid-phase preparation and electrochemical property of LiFePO4/C nanowires[J]. Journal of Central South University. 2014, 21: 477-481.
    [3] 辛国祥, 王蒙蒙, 翟耀, 等. 一步法合成具有优异循环性能的聚苯胺纳米线/自支撑石墨烯复合材料[J]. 复合材料学报, 2021, 38(4):251-261.

    XIN Guoxiang, WANG Mengmeng, ZHAI Yao, et al. One-step synthesis of polyaniline nanowire/self- supported graphene composite with excellent cycling stability[J]. Acta Materiae Composi-tae Sinica,2021,38(4):251-261(in Chinese).
    [4] TIAN L, SUN Q L, XU X J, et al. Controlled synthesis and formation mechanism of monodispersive lanthanum vanadate nanowires with monoclinic structure[J]. Journal of Solid State Chemistry,2013,200:123-127. doi: 10.1016/j.jssc.2013.01.039
    [5] XU L, SU Y, ZHOU Q, et al. Self-assembled catalyst growth and optical properties of single-crystalline ZnGa2O4 nanowires[J]. Crystal Growth & Design. 2007, 7(4): 810-814.
    [6] KIM H S, HWANG S O, MYUNG Y, et al. Three-dimensional structure of helical and zigzagged nanowires using electron tomography[J]. Nano Letters,2008,8(2):551-557. doi: 10.1021/nl072829i
    [7] ADAMS T W, VINUEZA N R, ROMANYUK O, et al. Nanostructured GaOOH modifified with reactive yellow, red and blue water-soluble dyes[J]. AIP Advances,2019,9:025005. doi: 10.1063/1.5080353
    [8] MURUGANANDHAM M, SURI R, SILLANPA M, et al. Catalytic activity evaluation of mesoporous α-GaOOH microspheres self-assembly[J]. Journal of Industrial and Engi-neering Chemistry,2015,26:348-353. doi: 10.1016/j.jiec.2014.12.008
    [9] HUANG P Q, LUAN J F. Structure and photocatalytic performance of rice husk-like Ba-doped GaOOH under light irradiation [J]. RSC Advances, 2019, 9: 19930-19939.
    [10] MURUGANANDHAM M, SURI R, ABDEL WAHED M S M, et al. Solvothermal synthesis of mesoporous α-GaOOH semi-nanospheres[J]. Materials Letters,2013,111:137-139. doi: 10.1016/j.matlet.2013.08.071
    [11] CHEN K, HE C, GUO D, et al. Low-voltage-worked photodetector based on Cu2O/GaOOH shell-core heterojunction nanorod arrays[J]. Journal of Alloys and Compounds,2018,755:199-205. doi: 10.1016/j.jallcom.2018.04.219
    [12] LIANG H F, MENG F, LAMB B K, et al. Solution growth of screw dislocation driven α-GaOOH nanorod arrays and their conversion to porous ZnGa2O4 nanotubes [J]. Chemi-cal Materials, 2017, 29: 7278-7287.
    [13] HSU Y H, NGUYEN A T, CHIU Y H, et al. Au-decorated GaOOH nanorods enhanced the performance of directmethanol fuel cells under light illumination[J]. Applied Catalysis B: Environmental,2016,185:133-140. doi: 10.1016/j.apcatb.2015.11.049
    [14] FENG J J, FU B, FANG L, et al. Uniform gallium oxyhydro-xide nanorod anodes with superior lithium-ion storage[J]. RSC Advances,2019,9:34896-34901. doi: 10.1039/C9RA07064H
    [15] ZHENG Y N, FAN M, LI K, et al. Ultraviolet-induced Ostwald ripening strategy towards a mesoporous Ga2O3/GaOOH heterojunction composite with a controllable structure for enhanced photocatalytic hydrogen evolution[J]. Catalysis Science & Technology,2020,10:2882-2892.
    [16] PRAKASAM B, LAHTINEN M, MURUGANANDHAM M, et al. Synthesis of self-assembled α-GaOOH microrods and 3D hierarchical architectures with flower like morphology and their conversion to α-Ga2O3[J]. Materials Letters,2015,158:370-372. doi: 10.1016/j.matlet.2015.05.044
    [17] LERTANANTAWONG B, RICHES J D, MULLANE A P O. Room temperature electrochemical synthesis of crystalline GaOOH nanoparticles from expanding liquid metals[J]. Langmuir, 2018, 34(26): 7604-7611.
    [18] XU X, BI K, HUANG K, et al. Controlled fabrication of α-GaOOH with a novel needle-like submicrontubular structure and its enhanced photocatalytic performance[J]. Journal of Alloys and Compounds,2015,644:485-490. doi: 10.1016/j.jallcom.2015.03.088
    [19] SHI L, ZHANG J, WU S, et al. Phase evolution of Ga2O3 produced from morphology-controllable α-GaOOH nanocrystals [J]. Journal of the American Ceramic Society, 2014, 97(8): 2607-2614.
    [20] SUN M, LI D Z, ZHANG W J, et al. Rapid microwave hydrothermal synthesis of GaOOH nanorods with photocatalytic activity toward aromatic compounds[J]. Nanotechnology,2010,21(35):355601. doi: 10.1088/0957-4484/21/35/355601
    [21] KREHULA S, RISTIC M, KUBUKI S, et al. The formation and microstructural properties of uniform α-GaOOH particles and their calcination products[J]. Journal of Alloys and Compounds,2015,620:217-227. doi: 10.1016/j.jallcom.2014.09.134
    [22] TIAN L, LI Y, WANG H F, et al. Controlled preparation and self-assembly of NdVO4 nanocrystals[J]. Journal of Rare Earths,2018,36:179-183. doi: 10.1016/j.jre.2017.04.010
    [23] TIAN L, CHENS M, LIU Q, et al. Effect of Eu3+-doping on morphology and fluorescent properties of neodymium vanadate nanorod-arrays[J]. Transactions Nonferrous Metals Society of China,2020,30:1031-1037. doi: 10.1016/S1003-6326(20)65274-8
    [24] 田俐, 刘强, 李岩. 一种GaOOH, Zn2+一维纳米材料的制备方法: 中国专利, ZL 201910233072.3[P]. 2021-02-02.

    TIAN Li, LIU Qiang, LI Yan. A preparation method of a one-dimension nanomaterials GaOOH, Zn2+: Chinese patent, ZL 201910233072.3[P]. 2021-02-02 (in Chinese).
    [25] WU S, ZHANG J, SHI L, et al. Template-free synthesis of α-GaOOH hyperbranched nanoarchitectures via crystal splitting and their optical properties[J]. RSC Advances,2014,4:8209-8215. doi: 10.1039/c3ra46931j
    [26] PEI L Z, QUAN Y, FANG D, et al. Synthesis and characterization of gallium oxide nanowires via a hydrothermal me-thod[J]. Materials Chemistry and Physics,2010,121(1-2):142-146. doi: 10.1016/j.matchemphys.2010.01.009
    [27] 梁建, 王晓斌, 张艳, 等. GaOOH和Ga2O3的制备及光学性能研究[J]. 人工晶体学报, 2013, 42(5):804-814. doi: 10.3969/j.issn.1000-985X.2013.05.006

    LIANG Jian, WANG Xiaobin, ZHANG Yan, et al. Synthesis and optical properties of GaOOH and Ga2O3[J]. Journal of Synthetic Crystals,2013,42(5):804-814(in Chinese). doi: 10.3969/j.issn.1000-985X.2013.05.006
  • 加载中
图(12)
计量
  • 文章访问数:  993
  • HTML全文浏览量:  467
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-07
  • 修回日期:  2021-07-18
  • 录用日期:  2021-07-31
  • 网络出版日期:  2021-08-18
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回