留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一步溶剂热法制备铋-氧化铋-溴氧化铋三元复合物及其可见光驱动催化降解亚甲基蓝

袁小亚 俞丽芯 贾雯

袁小亚, 俞丽芯, 贾雯. 一步溶剂热法制备铋-氧化铋-溴氧化铋三元复合物及其可见光驱动催化降解亚甲基蓝[J]. 复合材料学报, 2023, 40(7): 3973-3985. doi: 10.13801/j.cnki.fhclxb.20220909.002
引用本文: 袁小亚, 俞丽芯, 贾雯. 一步溶剂热法制备铋-氧化铋-溴氧化铋三元复合物及其可见光驱动催化降解亚甲基蓝[J]. 复合材料学报, 2023, 40(7): 3973-3985. doi: 10.13801/j.cnki.fhclxb.20220909.002
YUAN Xiaoya, YU Lixin, JIA Wen. One-step solvothermal preparation of Bi-Bi2O3-BiOBr ternary complex and its visible light-driven catalytic degradation of methylene blue[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3973-3985. doi: 10.13801/j.cnki.fhclxb.20220909.002
Citation: YUAN Xiaoya, YU Lixin, JIA Wen. One-step solvothermal preparation of Bi-Bi2O3-BiOBr ternary complex and its visible light-driven catalytic degradation of methylene blue[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3973-3985. doi: 10.13801/j.cnki.fhclxb.20220909.002

一步溶剂热法制备铋-氧化铋-溴氧化铋三元复合物及其可见光驱动催化降解亚甲基蓝

doi: 10.13801/j.cnki.fhclxb.20220909.002
基金项目: 国家自然科学基金(51402030);中国科学院大学菁英班创新人才培养“展翅计划”项目基金(JYZC-21-JT-03)
详细信息
    通讯作者:

    袁小亚,博士,教授,博士生导师,研究方向为光催化、纳米复合材料、储能材料等 E-mail: yuanxy@cqjtu.edu.cn

  • 中图分类号: O643.36;O484;TB331

One-step solvothermal preparation of Bi-Bi2O3-BiOBr ternary complex and its visible light-driven catalytic degradation of methylene blue

Funds: National Natural Science Foundation of China (51402030);The "Wings-Spreading Program" of the Elite Class of the University of Chinese Academy of Sciences (JYZC-21-JT-03)
  • 摘要: 构建表面等离子体共振(SPR)、氧空位、异质结是提升半导体光催化剂催化活性的有效方式之一。本文通过改变Bi(NO3)3与KBr的摩尔比,采用一步溶剂热法合成了具有SPR效应和氧空位的Bi-Bi2O3-BiOBr三元异质结复合材料。利用XRD、电子顺磁共振(EPR)、 XPS、SEM、TEM、UV-vis等手段对所得产物的晶相、元素组成和微观形貌进行表征分析,考察Bi(NO3)3与KBr的摩尔比对三元复合物可见光驱动光催化降解亚甲基蓝(MB)活性的影响。结果表明:Bi-Bi2O3-BiOBr的催化活性依赖于Bi(NO3)3与KBr的摩尔比,但高于纯Bi2O3和BiOBr。Bi(NO3)3与KBr摩尔比为2∶1制备的2∶1-Bi-Bi2O3-BiOBr对MB展现了最佳光催化活性:在240 min的可见光照射下, 2∶1-Bi-Bi2O3-BiOBr上对MB的去除率为95.07%,降解动力学符合准一级动力学,降解速率常数为2.90 h−1,分别是纯Bi2O3和BiOBr的5倍与6倍,经4次循环实验后,2∶1-Bi-Bi2O3-BiOBr复合材料对MB的除去效率没有显著的降低。该物质优异的可见光光催化活性催化机制可归结为SPR效应、半导体异质结结构和氧空位的3种协同作用。本文合成特殊结构光催化剂的方法可推广到其他催化材料。

     

  • 图  1  Bi2O3、1∶1-Bi/BiOBr、2∶1-Bi-Bi2O3-BiOBr、3∶1-Bi-Bi2O3-BiOBr和4∶1-Bi-Bi2O3-BiOBr样品的XRD图谱(a)与局部放大图谱(b)

    Figure  1.  XRD patterns of Bi2O3, 1∶1-Bi/BiOBr, 2∶1-Bi-Bi2O3-BiOBr, 3∶1-Bi-Bi2O3-BiOBr and 4∶1-Bi-Bi2O3-BiOBr (a) and partial enlargement (b)

    图  2  1∶1-Bi/BiOBr和2∶1-Bi-Bi2O3-BiOBr复合物的EPR图谱

    Figure  2.  EPR spectra of 1∶1-Bi/BiOBr and 2∶1-Bi-Bi2O3-BiOBr composites

    g—Constant, it depends on the properties of the free radical

    图  3  (a) 样品2∶1-Bi-Bi2O3-BiOBr的XPS全谱图;Br3d (b)、O1s (c)、Bi4f (d)的高分辨率XPS图谱

    Figure  3.  (a) XPS survey spectrum of 2∶1-Bi-Bi2O3-BiOBr; XPS spectra of Br3d (b), O1s (c) and Bi4f peak (d)

    图  4  样品Bi2O3 ((a), (b))、1∶1-Bi/BiOBr ((c), (d))和2∶1-Bi-Bi2O3-BiOBr ((e), (f))的SEM图像

    Figure  4.  SEM images of Bi2O3 ((a), (b)), 1∶1-Bi/BiOBr ((c), (d)) and 2∶1-Bi-Bi2O3-BiOBr ((e), (f))

    图  5  样品Bi2O3 ((a), (b))、1∶1-Bi/BiOBr ((c), (d))和2∶1-Bi-Bi2O3-BiOBr ((e), (f))的TEM图像

    Figure  5.  TEM images of Bi2O3 ((a), (b)), 1∶1-Bi/BiOBr ((c), (d)) and 2∶1-Bi-Bi2O3-BiOBr ((e), (f))

    图  6  样品Bi2O3、1∶1-Bi/BiOBr、不同比例Bi-Bi2O3-BiOBr的UV-vis DRS图谱(a)和带隙图谱(b)

    Figure  6.  UV-vis DRS spectra (a) and plots (b) of (αhv)1/2 versus hv for Bi2O3, 1∶1-Bi/BiOBr and different ratios of Bi-Bi2O3-BiOBr composites

    图  7  样品Bi2O3、1∶1-Bi/BiOBr、2∶1-Bi-Bi2O3-BiOBr的瞬时光电流图谱(a)和PL光谱(b)

    Figure  7.  Transient photocurrent responses (a) and PL spectra (b) for different samples of Bi2O3, 1∶1-Bi/BiOBr, 2∶1-Bi-Bi2O3-BiOBr

    图  8  样品光降解亚甲基蓝(MB)曲线图(a)和反应速率常数图(b);(c) 2∶1-Bi-Bi2O3-BiOBr和2∶1-Bi-Bi2O3-BiOBr-P(物理法制备)在可见光条件下降解MB;(d) 2∶1-Bi-Bi2O3-BiOBr在可见光条件下的循环实验

    Figure  8.  Photocatalytic degradation curves of methylene blue (MB) (a) and reaction rate constants k (b) for samples; (c) Photocatalytic degradation of aqueous MB using 2∶1-Bi-Bi2O3-BiOBr and 2∶1-Bi-Bi2O3-BiOBr-P (physical preparation) under visible light irradiation; (d) Cycling runs of 2∶1-Bi-Bi2O3-BiOBr composite under visible light irradiation

    图  9  (a) 不同捕获剂对2∶1-Bi-Bi2O3-BiOBr光催化剂光降解MB性能的影响; (b) 缺陷型Bi-Bi2O3-BiOBr纳米复合材料在可见光照射下去除MB光催化机制

    Figure  9.  (a) Effect of different scavengers on 2∶1-Bi-Bi2O3-BiOBr photocatalytic degradation MB performance; (b) Mechanism for aqueous MB removal catalyzed by defective Bi-Bi2O3-BiOBr nanocomposites under visible light irradiation

    SPR—Surface plasmon resonance; VB—Valence band; CB—Conduction band; OVS—Oxygen vacancy site; BQ—Benzoquinone; IPA—Isopropanol; AO—Ammonium oxalate; NHE—Normal hydrogen electrode

    表  1  实验对照组

    Table  1.   Experimental control group

    Sample KBr/mmol Bi(NO3)3/mmol
    1∶1-Bi/BiOBr 1 1
    2∶1-Bi-Bi2O3-BiOBr 1 2
    3∶1-Bi-Bi2O3-BiOBr 1 3
    4∶1-Bi-Bi2O3-BiOBr 1 4
    Bi2O3 1
    下载: 导出CSV
  • [1] VERMA A, PRAKASH N T, TOOR A P. Photocatalytic degradation of herbicide isoproturon in TiO2 aqueous suspensions: Study of reaction intermediates and degradation pathways[J]. Environmental Progress & Sustainable Energy,2014,33(2):402-409.
    [2] ZHANG K, LIU C, HUANG F, et al. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst[J]. Applied Catalysis B: Environmental,2006,68(3-4):125-129. doi: 10.1016/j.apcatb.2006.08.002
    [3] CAO J, XU B, LUO B, et al. Novel BiOI/BiOBr heterojunction photocatalysts with enhanced visible light photocatalytic properties[J]. Catalysis Communications,2011,13(1):63-68. doi: 10.1016/j.catcom.2011.06.019
    [4] JIANG Z, YANG F, YANG G, et al. The hydrothermal synthesis of BiOBr flakes for visible-light-responsive photocatalytic degradation of methyl orange[J]. Journal of Photochemistry and Photobiology A: Chemistry,2010,212(1):8-13. doi: 10.1016/j.jphotochem.2010.03.004
    [5] 李晓晖, 彭冬, 袁小亚, 等. 卤氧化铋光催化剂改性的研究进展及应用[J]. 装备环境工程, 2020, 17(8):85-90.

    LI Xiaohui, PENG Dong, YUAN Xiaoya, et al. Research progress and application on bismuth oxyhalide photocatalyst modification[J]. Equipment Environmental Engineering,2020,17(8):85-90(in Chinese).
    [6] CHEN J, QIN S, SONG G, et al. Shape-controlled solvothermal synthesis of Bi2S3 for photocatalytic reduction of CO2 to methyl formate in methanol[J]. Dalton Transactions,2013,42(42):15133-15138. doi: 10.1039/c3dt51887f
    [7] WEI X X, CUI B, WANG X, et al. Tuning the physico-chemical properties of BiOBr via solvent adjustment: Towards an efficient photocatalyst for water treatment[J]. CrystEngComm,2019,21(11):1750-1757. doi: 10.1039/C8CE02072H
    [8] FU J, TIAN Y, CHANG B, et al. BiOBr-carbon nitride heterojunctions: Synthesis, enhanced activity and photocatalytic mechanism[J]. Journal of Materials Chemistry,2012,22(39):21159-21166. doi: 10.1039/c2jm34778d
    [9] LI H, DENG F, ZHENG Y, et al. Visible-light-driven Z-scheme rGO/Bi2S3-BiOBr heterojunctions with tunable exposed BiOBr (102) facets for efficient synchronous photocatalytic degradation of 2-nitrophenol and Cr(VI) reduction[J]. Environmental Science: Nano,2019,6(12):3670-3683. doi: 10.1039/C9EN00957D
    [10] MI Y, LI H, ZHANG Y, et al. Synthesis of belt-like bismuth-rich bismuth oxybromide hierarchical nanostructures with high photocatalytic activities[J]. Journal of Colloid and Interface Science,2019,534:301-311. doi: 10.1016/j.jcis.2018.09.038
    [11] LIU Y, HU Z, YU J C. Photocatalytic degradation of ibuprofen on S-doped BiOBr[J]. Chemosphere,2021,278:130376. doi: 10.1016/j.chemosphere.2021.130376
    [12] WU X, NG Y H, WANG L, et al. Improving the photo-oxidative capability of BiOBr via crystal facet engineering[J]. Journal of Materials Chemistry A,2017,5(17):8117-8124. doi: 10.1039/C6TA10964K
    [13] SONG S, GAO W, WANG X, et al. Microwave-assisted synthesis of BiOBr/graphene nanocomposites and their enhanced photocatalytic activity[J]. Dalton Transactions,2012,41(34):10472-10476. doi: 10.1039/c2dt31088k
    [14] ZHANG J, ZHANG L, SHEN X, et al. Synthesis of BiOBr/WO3 p-n heterojunctions with enhanced visible light photocatalytic activity[J]. CrystEngComm,2016,18(21):3856-3865. doi: 10.1039/C6CE00824K
    [15] REN Y, YANG Y, JING X, et al. Facile one step solvothermal synthesis and high visible light photocatalytic property of flower-like Bi2O3/BiOBr microspheres[J]. Materials Letters,2019,257:126681. doi: 10.1016/j.matlet.2019.126681
    [16] WANG Q S, SONG L X, TENG Y, et al. Improved photocatalytic performance of self-assembled Bi/BiOBr square microflowers with square nanopetals[J]. RSC Advances,2015,5(98):80853-80858. doi: 10.1039/C5RA16571G
    [17] JIA W, YUAN X Y, FENG Z J, et al. Facile one-pot synthesis of Bi-decorated defective BiOBr composites with remarkable visible light driven activity towards reduction of aqueous Cr(VI) and degradation of organic dye[J]. Materials Reports,2021,35(24):24032-24040.
    [18] ZHANG D, LI J, WANG Q, et al. High {001} facets dominated BiOBr lamellas: Facile hydrolysis preparation and selective visible-light photocatalytic activity[J]. Journal of Materials Chemistry A,2013,1(30):8622-8629. doi: 10.1039/c3ta11390f
    [19] 王吉玲. 溴氧化铋纳米片的制备及其光催化性能调控[D]. 武汉: 华中师范大学, 2013.

    WANG Jiling. Synthesis and visible light photoreactivity tuning of bismuth oxybromide nanoplates[D]. Wuhan: Central China Normal University, 2013(in Chinese).
    [20] GAO F, ZHAO Y, LI Y, et al. Hierarchical Bi based nanobundles: An excellent photocatalyst for visible-light degradation of rhodamine B dye[J]. Journal of Colloid and Interface Science,2015,448:564-572. doi: 10.1016/j.jcis.2015.02.056
    [21] LV Y, PAN C, MA X, et al. Production of visible activity and UV performance enhancement of ZnO photocatalyst via vacuum deoxidation[J]. Applied Catalysis B: Environmental,2013,138-139:26-32. doi: 10.1016/j.apcatb.2013.02.011
    [22] CHENG M, XIAO C, XIE Y. Photocatalytic nitrogen fixation: The role of defects in photocatalysts[J]. Journal of Materials Chemistry A,2019,7(34):19616-19633. doi: 10.1039/C9TA06435D
    [23] 孙明禄, 李解元, 董帆. Bi系光催化材料结构调控方法及其在环境能源领域的应用研究进展[J]. 华中农业大学学报, 2020, 39(5):17-25. doi: 10.13300/j.cnki.hnlkxb.2020.05.003

    SUN Minglu, LI Jieyuan, DONG Fan. Structure control methods of Bi based photocatalytic materials and research progress on their application in environmental energy field[J]. Journal of Huazhong Agricultural University,2020,39(5):17-25(in Chinese). doi: 10.13300/j.cnki.hnlkxb.2020.05.003
    [24] BAI Y, SHI X, WANG P, et al. BiOBrxI1−x/BiOBr heterostructure engineering for efficient molecular oxygen activation[J]. Chemical Engineering Journal,2019,356:34-42. doi: 10.1016/j.cej.2018.09.006
    [25] ZHANG Z, WANG W, GAO E, et al. Enhanced photocatalytic activity of Bi2WO6 with oxygen vacancies by zirconium doping[J]. Journal of Hazardous Materials,2011,196:255-262. doi: 10.1016/j.jhazmat.2011.09.017
    [26] PAN X, YANG M Q, FU X, et al. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications[J]. Nanoscale,2013,5(9):3601-3614. doi: 10.1039/c3nr00476g
    [27] LIRA E, WENDT S, HUO P, et al. The importance of bulk Ti3+ defects in the oxygen chemistry on titania surfaces[J]. Journal of the American Chemical Society,2011,133(17):6529-6532. doi: 10.1021/ja200884w
    [28] AI Z H, HO W K, LEE S S, et al. Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light[J]. Environmental Science & Technology,2009,43(11):4143-4150. doi: 10.1021/es9004366
    [29] YUAN X, FENG Z, ZHAO J, et al. Significantly enhanced aqueous Cr(VI) removal performance of Bi/ZnO nanocomposites via synergistic effect of adsorption and SPR-promoted visible light photoreduction[J]. Catalysts,2018,8(10):426. doi: 10.3390/catal8100426
    [30] SHAN L, LIU Y, CHEN H, et al. An alpha-Bi2O3/BiOBr core-shell heterojunction with high photocatalytic activity[J]. Dalton Transactions,2017,46(7):2310-2321. doi: 10.1039/C6DT04411E
    [31] LI Y Y, WANG J S, YAO H C, et al. Efficient decomposition of organic compounds and reaction mechanism with BiOI photocatalyst under visible light irradiation[J]. Journal of Molecular Catalysis A: Chemical,2011,334(1-2):116-122. doi: 10.1016/j.molcata.2010.11.005
    [32] IMAM S S, ADNAN R, KAUS N H M, et al. Room-temperature synthesis of Bi/BiOBr composites for the catalytic degradation of ciprofloxacin using indoor fluorescent light illumination[J]. Journal of Materials Science: Materials in Electronics,2019,30(6):6263-6276. doi: 10.1007/s10854-019-00930-z
    [33] QU D, WANG L, ZHENG D, et al. An asymmetric supercapacitor with highly dispersed nano-Bi2O3 and active carbon electrodes[J]. Journal of Power Sources,2014,269(10):129-135.
    [34] HOU D, HU X, WEN Y, et al. Electrospun sillenite Bi12MO20 (M = Ti, Ge, Si) nanofibers: General synthesis, band structure, and photocatalytic activity[J]. Physical Chemistry Chemical Physics,2013,15(47):20698-20705. doi: 10.1039/c3cp53945h
    [35] SHAFAWI A N, MAHMUD R A, ALI K A, et al. Bi2O3 particles decorated on porous g-C3N4 sheets: Enhanced photocatalytic activity through a direct Z-scheme mechanism for degradation of reactive black 5 under UV-visible light[J]. Journal of Photochemistry and Photobiology A: Chemistry,2019,389:112289.
    [36] WANG Z Y, YAN S, SUN Y J, et al. Bi metal sphere/graphene oxide nanohybrids with enhanced direct plasmonic photocatalysis[J]. Applied Catalysis B: Environmental,2017,214:148-157. doi: 10.1016/j.apcatb.2017.05.040
    [37] GORDON T R, CARGNELLO M, PAIK T, et al. Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity[J]. Journal of the American Chemical Society,2012,134(15):6751-6761. doi: 10.1021/ja300823a
    [38] LI J, ZHANG M, GUAN Z, et al. Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2[J]. Applied Catalysis B: Environmental,2017,206:300-307. doi: 10.1016/j.apcatb.2017.01.025
    [39] HOU L, ZHANG M, GUAN Z, et al. Effect of annealing ambience on the formation of surface/bulk oxygen vacancies in TiO2 for photocatalytic hydrogen evolution[J]. Applied Surface Science,2018,428:640-647. doi: 10.1016/j.apsusc.2017.09.144
    [40] YAN J, WU G, GUAN N, et al. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: Anatase versus rutile[J]. Physical Chemistry Chemical Physics,2013,15(26):10978-10988. doi: 10.1039/c3cp50927c
    [41] LIU J, LI H, DU N, et al. Synthesis, characterization, and visible-light photocatalytic activity of BiOI hierarchical flower-like microspheres[J]. RSC Advances,2014,4(59):31393-31399. doi: 10.1039/C4RA04829F
    [42] ZHANG Z, WANG W, WANG L, et al. Enhancement of visible-light photocatalysis by coupling with narrow-band-gap semiconductor: A case study on Bi2S3/Bi2WO6[J]. ACS Applied Materials & Interfaces,2012,4(2):593-597. doi: 10.1021/am2017199
    [43] WANG Q, JIAO D, LIAN J, et al. Preparation of efficient visible-light-driven BiOBr/Bi2O3 heterojunction composite with enhanced photocatalytic activities[J]. Journal of Alloys and Compounds,2015,649:474-482. doi: 10.1016/j.jallcom.2015.07.126
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  701
  • HTML全文浏览量:  435
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-14
  • 修回日期:  2022-08-20
  • 录用日期:  2022-09-02
  • 网络出版日期:  2022-09-13
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回