留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大丝束PAN纤维热反应特性及其在连续预氧化过程中的结构性能演变

陈肖寒 郭利闯 黄翔宇 王晓旭 刘杰 王春华

陈肖寒, 郭利闯, 黄翔宇, 等. 大丝束PAN纤维热反应特性及其在连续预氧化过程中的结构性能演变[J]. 复合材料学报, 2023, 40(1): 151-159. doi: 10.13801/j.cnki.fhclxb.20220225.001
引用本文: 陈肖寒, 郭利闯, 黄翔宇, 等. 大丝束PAN纤维热反应特性及其在连续预氧化过程中的结构性能演变[J]. 复合材料学报, 2023, 40(1): 151-159. doi: 10.13801/j.cnki.fhclxb.20220225.001
CHEN Xiaohan, GUO Lichuang, HUANG Xiangyu, et al. Thermal reaction characteristics of large tow PAN precursors and their evolution of structure and properties during continuous pre-oxidation[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 151-159. doi: 10.13801/j.cnki.fhclxb.20220225.001
Citation: CHEN Xiaohan, GUO Lichuang, HUANG Xiangyu, et al. Thermal reaction characteristics of large tow PAN precursors and their evolution of structure and properties during continuous pre-oxidation[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 151-159. doi: 10.13801/j.cnki.fhclxb.20220225.001

大丝束PAN纤维热反应特性及其在连续预氧化过程中的结构性能演变

doi: 10.13801/j.cnki.fhclxb.20220225.001
基金项目: 常州市应用基础研究计划(CJ20210029)
详细信息
    通讯作者:

    王春华,硕士,高级工程师,研究方向为碳纤维、纳米纤维的制备和应用  E-mail: 382755801@qq.com

  • 中图分类号: TQ342.74

Thermal reaction characteristics of large tow PAN precursors and their evolution of structure and properties during continuous pre-oxidation

Funds: Supported by Changzhou Sci & Tech Program (CJ20210029)
  • 摘要: 利用热应力、DSC、FTIR、元素分析(EA)、XRD及力学性能、密度等测试表征手段,结合小丝束(24K)聚丙烯腈(PAN)原丝,解析了大丝束(48K) PAN原丝的热反应特性,并采用50 min连续预氧化制备高性能大丝束碳纤维,研究了大丝束PAN原丝连续预氧化过程中的结构性能演变规律。结果表明,大丝束PAN纤维的化学热应力是小丝束的1.13~1.43倍,且启动温度更低,当温度为250℃时,化学热应力差值最大,对应大丝束纤维密度为1.316 g/cm3;纤维内准晶区在反应初期即大量转化为无定形状态,准晶区晶粒尺寸呈现先增大后减小的趋势;50 min连续预氧化制备的大丝束碳纤维单丝拉伸强度和拉伸模量分别为4 240 MPa和244 GPa,相关力学性能达到市售国外大丝束碳纤维同等水平。

     

  • 图  1  热应力记录装置示意图

    Figure  1.  Schematic diagram of thermal stress recording device

    图  2  大丝束碳纤维制备示意图

    Figure  2.  Schematic diagram of large tow carbon fibers manufacturing process

    图  3  (a) 24K-PAN和48K-PAN纤维热应力曲线(升温速率为1℃/min);(b) 48K-PAN和24K-PAN纤维热应力比值和差值的变化曲线

    Figure  3.  (a) Thermal stress curves of 24K-PAN and 48K-PAN precursors (Heating rate: 1℃/min); (b) Variable curves of ratio and difference of thermal stress between 48K-PAN and 24K-PAN precursors

    τ—Thermal stress; Δτ—Difference of thermal stress

    图  4  24K-PAN小丝束(a)和48K-PAN大丝束(b)纤维样品在空气气氛下的DSC曲线(升温速率5℃/min)

    Figure  4.  DSC curves of 24K small tow (a) and 48K large tow PAN (b) fiber samples in air atmosphere (Heating rate: 5℃/min )

    图  5  不同温度下24K-PAN和48K-PAN纤维密度对比

    Figure  5.  Density contrast of 24K-PAN and 48K-PAN precursors at different temperatures

    图  6  48K-PAN纤维预氧化各温区的FTIR图谱

    Figure  6.  FTIR spectra of pre-oxidation precursors of 48K-PAN fiber at different zones

    图  7  不同温区48K-PAN预氧化纤维的XRD图谱及分峰拟合示意图

    Figure  7.  XRD patterns of pre-oxidized precursors of 48K-PAN fiber at different zones and peak fitting diagram

    图  8  3种碳纤维的XRD图谱

    Figure  8.  XRD patterns of three kinds of carbon fiber

    表  1  不同温区预氧化碳纤维编号

    Table  1.   Sample No. of carbon fiber at different pre-oxidized zones

    Temperature/℃Sample No.
    210P1
    225P2
    240P3
    250P4
    260P5
    下载: 导出CSV

    表  2  24K聚丙烯腈(PAN)纤维和48K PAN纤维的主要性能

    Table  2.   Main properties of 24K and 48K polyacrylonitrile (PAN) precursors

    Property24K-PAN48K-PAN
    Diameter/μm11.8311.82
    Tensile strength/GPa0.690.68
    ΔH/(J·g−1)25232531
    Crystallinity/%60.961.6
    Grain size/nm9.089.08
    Note: ∆H—Enthalpy of thermal reaction.
    下载: 导出CSV

    表  3  不同温度下24K-PAN和48K-PAN纤维DSC参数

    Table  3.   DSC parameters of 24K-PAN and 48K-PAN fiber at different temperatures

    Temperature/℃Tonset/℃TPeak1/℃TPeak2/℃H/(J·g−1)
    24K48K24K48K24K48K24K48K
    8021021127127132332325232531
    14520921226927232232225582496
    19020921127027032232426852575
    21521621526726732232322462231
    23522322326426432332319651917
    25022923332132214801209
    275249249320319 824 794
    Notes: Tonset—Onset temperature of thermal reaction; TPeak1—First peak temperature of DSC curve; TPeak2—Second peak temperature of DSC curve.
    下载: 导出CSV

    表  4  各阶段大丝束PAN预氧化纤维的相对环化度RCI、脱氢指数RD、密度和氧含量

    Table  4.   Relative cyclization index RCI, relative dehydrogenation index RD, density and oxygen content of pre-oxidized precursors of large tow PAN fiber at each zone

    SampleRCI/%RD/%Oxygen content/wt%Density/(g·cm−3)
    PAN 22.8 53.5 3.05 1.192
    P1 42.3 66.2 3.40 1.205
    P2 53.2 102.7 4.44 1.230
    P3 65.7 114.8 5.55 1.269
    P4 73.8 116.1 8.58 1.323
    P5 79.1 116.8 11.05 1.372
    下载: 导出CSV

    表  5  不同温区48K-PAN预氧化纤维的晶态参数

    Table  5.   Crystalline parameters of pre-oxidized precursors of 48K-PAN fiber at different zones

    Sample2θ/(°)L(100)/nmXc/%
    PAN 16.78 9.08 56.6
    P1 16.90 11.98 25.3
    P2 16.88 11.06 21.7
    P3 16.78 8.39 18.0
    P4 16.81 4.42 5.6
    P5
    Notes: L(100)—Microcrystal size perpendicular to (100) (2θ=16.7°); Xc—Degree of crystallinity.
    下载: 导出CSV

    表  6  3种大丝束碳纤维的力学性能和结构参数

    Table  6.   Mechanical properties and structural parameters of three kinds of large tow carbon fibers

    PerformanceZoltek-50KSGL-50KDomestic-
    50 min
    Density/(g·cm−3)1.8101.8001.791
    Tensile strength/MPa413740004240
    Tensile modulus/GPa242240244
    d(002)/nm0.3520.3540.355
    Lc/nm2.021.731.68
    Vp/%16.216.216.3
    Notes: d(002)—(002) crystal plane spacing of carbon fiber; Lc—Crystallite size of carbon fiber; Vp—Porosity of carbon fiber.
    下载: 导出CSV
  • [1] JOAQUIM J M. New, innovative 80K tow carbon fiber precursor for non-aerospace use to hit the market in mid-2020[J]. Reinforced Plastics,2020,64(3):145-148. doi: 10.1016/j.repl.2019.10.005
    [2] 吉用秋, 俞成涛, 邱睿, 等. 大丝束碳纤维产业发展现状及面临的问题[J]. 合成纤维工业, 2019, 42(3):64-68. doi: 10.3969/j.issn.1001-0041.2019.03.015

    JI Yongqiu, YU Chengtao, QIU Rui, et al. Development status and problems of large tow carbon fiber industry[J]. China Synthetic Fiber Industry,2019,42(3):64-68(in Chinese). doi: 10.3969/j.issn.1001-0041.2019.03.015
    [3] 徐爱武, 梁燕, 蒋玲玲. 大丝束碳纤维发展现状及我国技术瓶颈和发展建议[J]. 合成纤维, 2020, 49(6):19-23.

    XU Aiwu, LIANG Yan, JIANG Lingling. Development status of large tow carbon fiber and its technical bottleneck and development suggestions in China[J]. Synthetic Fiber in China,2020,49(6):19-23(in Chinese).
    [4] HIREMATH N, YOUNG S, GHOSSEIN H, et al. Low cost textile-grade carbon-fiber epoxy composites for automotive and wind energy applications[J]. Composites Part B: Engineering,2020,198:108156. doi: 10.1016/j.compositesb.2020.108156
    [5] BÜCHELER D, KAISER A, HENNING F. Using thermogravimetric analysis to determine carbon fiber weight percentage of fiber-reinforced plastics[J]. Composites Part B: Engineering,2016,106:218-223. doi: 10.1016/j.compositesb.2016.09.028
    [6] JANG D, LEE M E, CHOI J, et al. Strategies for the production of PAN-based carbon fibers with high tensile strength[J]. Carbon,2022,186:644-677. doi: 10.1016/j.carbon.2021.10.061
    [7] HAO J J, LU C X, LI D H. A comparative analysis of polyacrylonitrile-based carbon fibers: (II) Relationship between the microstructures and properties[J]. New Carbon Materials,2020,35(6):802-809. doi: 10.1016/S1872-5805(20)60528-5
    [8] RUAN R R, CAO W Y, XU L H. Quantitative characterization of physical structure on carbon fiber surface based on image technique[J]. Materials & Design,2020,185:108225. doi: 10.1016/j.matdes.2019.108225
    [9] LU J S, LI W W, KANG H L, et al. Microstructure and properties of polyacrylonitrile based carbon fibers[J]. Polymer Testing,2020,81:106267. doi: 10.1016/j.polymertesting.2019.106267
    [10] GUTMANN P, MOOSBURGER-WILL J, KURT S, et al. Carbonization of polyacrylonitrile-based fibers under defined tensile load: Influence on shrinkage behavior, microstructure, and mechanical properties[J]. Polymer Degradation and Stability,2019,163:174-184. doi: 10.1016/j.polymdegradstab.2019.03.007
    [11] 候传礼. 大丝束碳纤维应用及展纱设备研究进展[J]. 纤维复合材料, 2015, 32(1):51-53. doi: 10.3969/j.issn.1003-6423.2015.01.012

    HOU Chuanli. Research progress of large tow carbon fiber application and yarn spreading equipment[J]. Fiber Composites,2015,32(1):51-53(in Chinese). doi: 10.3969/j.issn.1003-6423.2015.01.012
    [12] 黄明, 祖韵秋, 高亢, 等. 大丝束CF/EP汽车地板VARTM模拟与高温力学性能[J]. 化工进展, 2022, 41(5): 2546-2554.

    HUANG Ming, ZU Yunqiu, GAO Kang, et al. VARTM simulation and high temperature mechanical properties of large tow CF/EP automobile floor[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2546-2554(in Chinese).
    [13] ZHANG X X, QI Y, YANG J X, et al. Insight into stabilization behaviors of Lignin/PAN-derived electrospun precursor fibers[J]. Polymer Degradation and Stability,2021,191:109680. doi: 10.1016/j.polymdegradstab.2021.109680
    [14] LIU W H, SHEN R F, LIU S M, et al. Free radical evolution and decay of PAN nano-fibers formed by irradiation and thermal stabilization[J]. Polymer Degradation and Stability,2021,188:109570. doi: 10.1016/j.polymdegradstab.2021.109570
    [15] KHAYYAM H, JAZAR R, NUNNA S, et al. PAN precursor fabrication, applications and thermal stabilization process in carbon fiber production: Experimental and mathematical modelling[J]. Progress in Materials Science,2020,107:100575. doi: 10.1016/j.pmatsci.2019.100575
    [16] BANAIE K A, MIRJALILI M, ESLAMI-FARSANI R. The study of the correlation between ascending and descending rates of the imposed specific stress and transposition of chemical reactions during PAN precursor fibers stabilization[J]. Polymer Degradation and Stability,2018,156:234-244. doi: 10.1016/j.polymdegradstab.2018.09.006
    [17] 连峰, 杨平, 王芬, 等. 基于低环化反应活化能的PAN纤维快速预氧化研究[J]. 高科技纤维与应用, 2019, 44(5):23-28. doi: 10.3969/j.issn.1007-9815.2019.05.002

    LIAN Feng, YANG Ping, WANG Fen, et al. Study on rapid pre-oxidation of PAN fibers based on low activation energy of cyclization[J]. Hi-Tech Fiber and Application,2019,44(5):23-28(in Chinese). doi: 10.3969/j.issn.1007-9815.2019.05.002
    [18] 李常清, 徐樑华, 齐帅, 等. PAN原丝高效预氧化研究[J]. 化工新型材料, 2017, 45(1):71-73.

    LI Changqing, XU Lianghua, QI Shuai, et al. Study on high efficiency stabilization of PAN precursor[J]. New Chemical Materials,2017,45(1):71-73(in Chinese).
    [19] CHOI D, KIL H, LEE S. Fabrication of low-cost carbon fibers using economical precursors and advanced processing technologies[J]. Carbon,2019,142:610-649. doi: 10.1016/j.carbon.2018.10.028
    [20] KIM S, LEE S, PARK S, et al. Continuous and rapid stabilization of polyacrylonitrile fiber bundles assisted by atmospheric pressure plasma for fabricating large-tow carbon fibers[J]. Carbon,2015,94:412-416. doi: 10.1016/j.carbon.2015.07.012
    [21] 中国国家标准化管理委员会. 碳纤维—单丝拉伸性能的测定: GB/T 31290—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People’s Republic of China. Carbon fibre—Determination of the tensile properties of single-filament specimens: GB/T 31290—2014[S]. Beijing: China Standards Press, 2014(in Chinese).
    [22] American Society for Testing and Materials. Standard test method for density of plastics by the density-gradient technique: ASTM D1505—2018[S]. West Conshohocken: ASTM International, 2018.
    [23] CHEN L, SHEN Z G, LIU J, et al. Effects of oxygen on the structural evolution of polyacrylonitrile fibers during rapid thermal treatment[J]. RSC Advances,2020,10(11):6356-6361. doi: 10.1039/C9RA08881D
    [24] LIU J, LIAN F, MA Z K, et al. Effects of deformation-induced orientation on cyclization and oxidation of polyacrylonitrile fibers during stabilization process[J]. Chinese Journal of Polymer Science,2012,30(6):786-795. doi: 10.1007/s10118-012-1165-8
    [25] 刘杰, 禹化果, 薛岩, 等. 聚丙烯腈纤维热应力与碳纤维结构及性能的关联性[J]. 复合材料学报, 2014, 31(1):66-72. doi: 10.3969/j.issn.1000-3851.2014.01.009

    LIU Jie, YU Huaguo, XUE Yan, et al. Relationship between the thermal stress of polyacrylonitrile fibers and the structure and properties of resulting carbon fibers[J]. Acta Materiae Compositae Sinica,2014,31(1):66-72(in Chinese). doi: 10.3969/j.issn.1000-3851.2014.01.009
    [26] FITZER E, MÜLLER D. The influence of oxygen on the chemical reactions during stabilization of pan as carbon fiber precursor[J]. Carbon,1975,13(1):63-69. doi: 10.1016/0008-6223(75)90259-6
    [27] BADII K, CHURCH J, GOLKARNARENJI G, et al. Chemical structure based prediction of PAN and oxidized PAN fiber density through a non-linear mathematical model[J]. Polymer Degradation and Stability,2016,131:53-61. doi: 10.1016/j.polymdegradstab.2016.06.019
    [28] 刘杰, 王雷, 张旺玺, 等. 热稳定化过程中PAN纤维热应力与热化学反应的关联性[J]. 新型炭材料, 2005, 20(4):343-349. doi: 10.3321/j.issn:1007-8827.2005.04.010

    LIU Jie, WANG Lei, ZHANG Wangxi, et al. Relationships between thermal stress and the thermo-chemical reaction of PAN fibers during thermal stabilization[J]. New Carbon Materials,2005,20(4):343-349(in Chinese). doi: 10.3321/j.issn:1007-8827.2005.04.010
    [29] XUE Y, LIU J, LIANG J Y. Correlative study of critical reactions in polyacrylonitrile based carbon fiber precursors during thermal-oxidative stabilization[J]. Polymer Degradation and Stability,2013,98(1):219-229. doi: 10.1016/j.polymdegradstab.2012.10.018
    [30] LIAN F, LIU J, MA Z K, et al. Stretching-induced deformation of polyacrylonitrile chains both in quasicrystals and in amorphous regions during the in situ thermal modification of fibers prior to oxidative stabilization[J]. Carbon,2012,50(2):488-499. doi: 10.1016/j.carbon.2011.09.003
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  1043
  • HTML全文浏览量:  638
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-17
  • 修回日期:  2022-01-22
  • 录用日期:  2022-02-11
  • 网络出版日期:  2022-02-28
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回