留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大丝束PAN纤维热反应特性及其在连续预氧化过程中的结构性能演变

陈肖寒 郭利闯 黄翔宇 王晓旭 刘杰 王春华

陈肖寒, 郭利闯, 黄翔宇, 等. 大丝束PAN纤维热反应特性及其在连续预氧化过程中的结构性能演变[J]. 复合材料学报, 2022, 40(0): 1-9
引用本文: 陈肖寒, 郭利闯, 黄翔宇, 等. 大丝束PAN纤维热反应特性及其在连续预氧化过程中的结构性能演变[J]. 复合材料学报, 2022, 40(0): 1-9
Xiaohan CHEN, Lichuang GUO, Xiangyu HUANG, Xiaoxu WANG, Jie LIU, Chunhua WANG. Thermal reaction characteristics of large tow PAN precursors and their evolution of structure and properties during continuous pre-oxidation[J]. Acta Materiae Compositae Sinica.
Citation: Xiaohan CHEN, Lichuang GUO, Xiangyu HUANG, Xiaoxu WANG, Jie LIU, Chunhua WANG. Thermal reaction characteristics of large tow PAN precursors and their evolution of structure and properties during continuous pre-oxidation[J]. Acta Materiae Compositae Sinica.

大丝束PAN纤维热反应特性及其在连续预氧化过程中的结构性能演变

基金项目: 常州市应用基础研究计划(CJ20210029)
详细信息
    通讯作者:

    王春华,硕士,高级工程师,研究方向为碳纤维、纳米纤维的制备和应用  E-mail: 382755801@qq.com

  • 中图分类号: TQ342.74

Thermal reaction characteristics of large tow PAN precursors and their evolution of structure and properties during continuous pre-oxidation

  • 摘要: 利用热应力、差示扫描量热仪(DSC)、傅里叶红外光谱(FTIR)、元素分析(EA)、X射线衍射仪(XRD)以及力学性能、密度等测试表征手段,结合小丝束(24K)聚丙烯腈(PAN)原丝,解析了大丝束(48K)PAN原丝的热反应特性,并采用50 min连续预氧化制备高性能大丝束碳纤维,研究了大丝束PAN原丝连续预氧化过程中的结构性能演变规律。结果表明,大丝束PAN纤维的化学热应力是小丝束的1.13~1.43倍,且启动温度更低,当温度为250℃时,化学热应力差值最大,对应大丝束纤维密度为1.316 g/cm3;纤维内准晶区在反应初期即大量转化为无定形状态,准晶区晶粒尺寸呈现先增大后减小的趋势;50 min连续预氧化制备的大丝束碳纤维单丝拉伸强度和拉伸模量分别为4 240 MPa和244 GPa,相关力学性能达到市售国外大丝束碳纤维同等水平。

     

  • 图  1  热应力记录装置示意图

    Figure  1.  Schematic diagram of thermal stress recording device

    图  2  大丝束碳纤维制备示意图

    Figure  2.  Schematic diagram of large tow carbon fibers manufacturing process

    图  3  24K和48K PAN纤维热应力曲线(升温速率为1℃/min)(a)、48K和24K PAN纤维热应力比值和差值的变化曲线(b)

    Figure  3.  Thermal stress curves of 24K and 48K PAN precursors (heating rate: 1℃/min) (a), ratio and difference of thermal stress between 48K and 24K PAN precursors (b)

    图  4  24K PAN小丝束(a)和48K PAN大丝束(b)纤维样品在空气气氛下的DSC曲线(升温速率5℃/min)

    Figure  4.  DSC curves of 24K small tow (a) and 48K large tow PAN (b) fiber samples in air atmosphere (heating rate: 5℃/min )

    图  5  不同温度下24K和48K PAN纤维密度对比

    Figure  5.  Density contrast of 24K and 48K PAN precursors at different temperatures

    图  6  PAN纤维预氧化各温区的红外谱图

    Figure  6.  FTIR spectra of pre-oxidation precursors of large tow PAN fiber at different zones

    图  7  不同温区大丝束PAN预氧化纤维的XRD图谱及分峰拟合示意图

    Figure  7.  XRD patterns of pre-oxidized precursors of large tow PAN fiber at different zones and peak fitting diagram

    图  8  三种碳纤维的XRD图谱

    Figure  8.  XRD patterns of three kinds of carbon fiber

    表  1  不同温区预氧化碳纤维编号

    Table  1.   Sample No. of carbon fiber at different pre-oxidized zones

    Temperature/℃Sample No.
    210P1
    225P2
    240P3
    250P4
    260P5
    下载: 导出CSV

    表  2  24K聚丙烯腈(PAN)纤维和48K PAN纤维的主要性能

    Table  2.   Main properties of 24K and 48K polyacrylonitrile (PAN) precursors

    Property24K-PAN48K-PAN
    Diameter/μm11.8311.82
    Tensile strength/GPa0.690.68
    ΔH/(J·g−1)25232531
    Crystallinity/%60.961.6
    Grain size/nm9.089.08
    Notes: ∆H—Enthalpy of thermal reaction.
    下载: 导出CSV

    表  3  不同温度下24K和48K PAN纤维DSC参数

    Table  3.   DSC parameters of 24K and 48K PAN fiber at different temperatures

    Temperature/℃Tonset/℃TPeak1/℃TPeak2/℃H/(J·g−1)
    24K48K24K48K24K48K24K48K
    8021021127127132332325232531
    14520921226927232232225582496
    19020921127027032232426852575
    21521621526726732232322462231
    23522322326426432332319651917
    250229233NANA32132214801209
    275249249NANA320319824794
    Notes: Tonse—Onset temperature of thermal reaction; TPeak1—First peak temperature of DSC curve; TPeak2—Second peak temperature of DSC curve.
    下载: 导出CSV

    表  4  各阶段大丝束PAN预氧化纤维的相对环化度RCI、脱氢指数RD、密度和氧含量

    Table  4.   Relative cyclization index RCI, relative dehydrogenation index RD, density and oxygen content of pre-oxidized precursors of large tow PAN fiber at each zone

    SampleRCI/%RD/%Oxygen content/%Density/(g·cm−3)
    PAN22.853.53.051.192
    P142.366.23.401.205
    P253.2102.74.441.230
    P365.7114.85.551.269
    P473.8116.18.581.323
    P579.1116.811.051.372
    下载: 导出CSV

    表  5  不同温区大丝束PAN预氧化纤维的晶态参数

    Table  5.   Crystalline parameters of pre-oxidized precursors of large tow PAN fiber at different zones

    Sample2θ/(°)L100/nmXc/%
    PAN16.789.0856.6
    P116.9011.9825.3
    P216.8811.0621.7
    P316.788.3918.0
    P416.814.425.6
    P5NANANA
    下载: 导出CSV

    表  6  三种大丝束碳纤维的力学性能和结构参数

    Table  6.   Mechanical properties and structural parameters of three kinds of large tow carbon fibers

    PerformanceZoltek-50KSGL-50KDomestic-50 min
    Density/(g·cm−3)1.811.801.791
    Tensile strength/MPa413740004240
    Tensile modulus/GPa242240244
    d002/nm0.3520.3540.355
    Lc/nm2.021.731.68
    Vp/%16.216.216.3
    Notes: d002—(002) crystal plane spacing of carbon fiber; Lc
    Crystallite size of carbon fiber; Vp—Porosity of carbon fiber.
    下载: 导出CSV
  • [1] JOAQUIM J M. New, innovative 80K tow carbon fiber precursor for non-aerospace use to hit the market in mid-2020[J]. Reinforced Plastics,2020,64(3):145-148. doi: 10.1016/j.repl.2019.10.005
    [2] 吉用秋, 俞成涛, 邱睿, 等. 大丝束碳纤维产业发展现状及面临的问题[J]. 合成纤维工业, 2019, 42(03):64-68. doi: 10.3969/j.issn.1001-0041.2019.03.015

    JI Y Q, YU C T, QIU R, et al. Development status and problems of large tow carbon fiber industry[J]. China Synthetic Fiber Industry,2019,42(03):64-68(in Chinese). doi: 10.3969/j.issn.1001-0041.2019.03.015
    [3] 徐爱武, 梁燕, 蒋玲玲. 大丝束碳纤维发展现状及我国技术瓶颈和发展建议[J]. 合成纤维, 2020, 49(06):19-23.

    XU A W, LIANG Y, JIANG L L. Development status of large tow carbon fiber and its technical bottleneck and development suggestions in China[J]. Synthetic Fiber in China,2020,49(06):19-23(in Chinese).
    [4] HIREMATH N, YOUNG S, GHOSSEIN H, et al. Low cost textile-grade carbon-fiber epoxy composites for automotive and wind energy applications[J]. Composites Part B:Engineering,2020,198:108-156.
    [5] BÜCHELERD, KAISERA, HENNINGF. Using Thermograv-imetric Analysis to Determine Carbon Fiber Weight Percentage of Fiber-Reinforced Plastics[J]. Composites Part B:Engineering,2016,106:218-223. doi: 10.1016/j.compositesb.2016.09.028
    [6] JANG D, LEE M E, CHOI J, et al. Strategies for the production of PAN-Based carbon fibers with high tensile strength[J]. Carbon,2022,186:644-677. doi: 10.1016/j.carbon.2021.10.061
    [7] HAO J J, LU C X, LI D H. A comparative analysis of polyacrylonitrile-based carbon fibers: (II) Relationship between the microstructures and properties[J]. New Carbon Materials,2020,35(6):802-809. doi: 10.1016/S1872-5805(20)60528-5
    [8] RUAN R R, CAO W Y, XU L H, Quantitative characterization of physical structure on carbon fiber surface based on image technique[J]. Materials & Design, 2020, 185: 108225.
    [9] LU J S, LI W W, KANG H L, et al. Microstructure and properties of polyacrylonitrile based carbon fibers[J]. Polymer Testing,2020,81:106267. doi: 10.1016/j.polymertesting.2019.106267
    [10] GUTMANN P, MOOSBURGER-WILL J, KURT S, et al. Carbonization of polyacrylonitrile-based fibers under defined tensile load: Influence on shrinkage behavior, microstructure, and mechanical properties[J]. Polymer Degradation and Stability,2019,163:174-184. doi: 10.1016/j.polymdegradstab.2019.03.007
    [11] 候传礼. 大丝束碳纤维应用及展纱设备研究进展[J]. 纤维复合材料, 2015, 32(1):51-53. doi: 10.3969/j.issn.1003-6423.2015.01.012

    HOU C L. Research progress of large tow carbon fiber application and yarn spreading equipment[J]. Fiber Composites,2015,32(1):51-53(in Chinese). doi: 10.3969/j.issn.1003-6423.2015.01.012
    [12] 黄明, 祖韵秋, 高亢, 等. 大丝束 CF/EP 汽车地板VARTM 模拟与高温力学性能[J]. 化工进展,DOI: 10.16085/j.issn.1000-6613.2021-1211.

    HUANG M, ZU Y Q, GAO K, et al. VARTM simulation and high temperature mechanical properties of large tow CF/EP automobile floor[J]. Chemical Industry and Engineering Progress,DOI: 10.16085/j.issn.1000-6613.2021-1211.
    [13] ZHANG X X, QI Y, YANG J X, et al. Insight into stabilization behaviors of Lignin/PAN-derived electrospun precursor fibers[J]. Polymer Degradation and Stability,2021,191:109680. doi: 10.1016/j.polymdegradstab.2021.109680
    [14] LIU W H, SHEN R F, LIU S M, et al. Free radical evolution and decay of PAN nano-fibers formed by irradiation and thermal stabilization[J]. Polymer Degradation and Stability,2021,188:109570. doi: 10.1016/j.polymdegradstab.2021.109570
    [15] KHAYYAM H, JAZAR R, NUNNA S, et al. PAN precursor fabrication, applications and thermal stabilization process in carbon fiber production: Experimental and mathematical modelling[J]. Progress in Materials Science,2020,107:100575. doi: 10.1016/j.pmatsci.2019.100575
    [16] BANAIE K A, MIRJALILI M, ESLAMI-FARSANI R. The study of the correlation between ascending and descending rates of the imposed specific stress and transposition of chemical reactions during PAN precursor fibers stabilization[J]. Polymer Degradation and Stability,2018,156:234-244. doi: 10.1016/j.polymdegradstab.2018.09.006
    [17] 连峰, 杨平, 王芬, 等. 基于低环化反应活化能的PAN纤维快速预氧化研究[J]. 高科技纤维与应用, 2019, 44(5):23-28. doi: 10.3969/j.issn.1007-9815.2019.05.002

    LIAN F, YANG P, WANG F, et al. Study on rapid pre-oxidation of PAN fibers based on low activation energy of cyclization[J]. Hi-Tech Fiber and Application,2019,44(5):23-28(in Chinese). doi: 10.3969/j.issn.1007-9815.2019.05.002
    [18] 李常清, 徐樑华, 齐帅, 等. PAN原丝高效预氧化研究[J]. 化工新型材料, 2017, 45(1):71-73.

    LI C Q, XU L H, QI S, et al. Study on high efficiency stabilization of PAN precursor[J]. New Chemical Materials,2017,45(1):71-73(in Chinese).
    [19] CHOI D, KIL H, LEE S. Fabrication of low-cost carbon fibers using economical precursors and advanced processing technologies[J]. Carbon,2019,142:610-649. doi: 10.1016/j.carbon.2018.10.028
    [20] KIM S, LEE S, PARK S, JO S M, LEE H S, JOH H I. Continuous and rapid stabilization of polyacrylonitrile fiber bundles assisted by atmospheric pressure plasma for fabricating large-tow carbon fibers[J]. Carbon,2015,94:412-416. doi: 10.1016/j.carbon.2015.07.012
    [21] 中国国家标准化管理委员会. 碳纤维-单丝拉伸性能的测定: GB/T 31290-2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People’s Republic of China. Carbon fibre-Determination of the tensile properties of single-filament specimens: GB/T 31290-2014[S]. Beijing: China Standards Press, 2014 (in Chinese).
    [22] American Society for Testing and Materials. ASTM D1505-2018. Standard test method for density of plastics by the density-gradient technique[S]. West Conshohocken, USA: ASTM International, 2018.
    [23] CHEN L, SHEN Z G, LIU J, LIANG J Y, WANG X X. Effects of oxygen on the structural evolution of polyacrylonitrile fibers during rapid thermal treatment[J]. RSC Advances,2020,10:6356-6361. doi: 10.1039/C9RA08881D
    [24] LIU J, LIAN F, MA Z K, et al. Effects of deformation-induced orientation on cyclization and oxidation of polyacrylonitrile fibers during stabilization process[J]. Chin J Polym Sci,2012,30(6):786-795. doi: 10.1007/s10118-012-1165-8
    [25] 刘杰, 禹化果, 薛岩, 等. 聚丙烯腈纤维热应力与碳纤维结构及性能的关联性[J]. 复合材料学报, 2014, 31(1):66-72. doi: 10.3969/j.issn.1000-3851.2014.01.009

    LIU J, YU H G, XUE Y, et al. Relationship between the thermal stress of polyacrylonitrile fibers and the structure and properties of resulting carbon fibers[J]. Acta Materiae Compositae Sinica,2014,31(1):66-72(in Chinese). doi: 10.3969/j.issn.1000-3851.2014.01.009
    [26] FITZER E, MÜLLER D. The influence of oxygen on the chemical reactions during stabilization of pan as carbon fiber precursor[J]. Carbon,1975,13(1):63-69. doi: 10.1016/0008-6223(75)90259-6
    [27] BADII K, CHURCH J, GOLKARNARENJI G, et al. Chemical structure based prediction of PAN and oxidized PAN fiber density through a non-linear mathematical model[J]. Polymer Degradation and Stability,2016,131:53-61. doi: 10.1016/j.polymdegradstab.2016.06.019
    [28] 刘杰, 王雷, 张旺玺, 等. 热稳定化过程中PAN纤维热应力与热化学反应的关联性[J]. 新型炭材料, 2005, 20(4):343-349. doi: 10.3321/j.issn:1007-8827.2005.04.010

    LIU J, WANG L, ZHANG W X, et al. Relationships between thermal stress and the thermo-chemical reaction of PAN fibers during thermal stabilization[J]. New Carbon Materials,2005,20(4):343-349(in Chinese). doi: 10.3321/j.issn:1007-8827.2005.04.010
    [29] XUE Y, LIU J, LIANG J Y. Correlative study of critical reactions in polyacrylonitrile based carbon fiber precursors during thermal-oxidative stabilization[J]. Polymer Degradation and Stability,2013,98(1):219-229. doi: 10.1016/j.polymdegradstab.2012.10.018
    [30] LIAN F, LIU J, MA Z K, et al. Stretching-induced deformation of polyacrylonitrile chains both in quasicrystals and in amorphous regions during the in situ thermal modification of fibers prior to oxidative stabilization[J]. Carbon,2012,50(2):488-499. doi: 10.1016/j.carbon.2011.09.003
  • 加载中
计量
  • 文章访问数:  130
  • HTML全文浏览量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-17
  • 录用日期:  2022-02-11
  • 修回日期:  2022-01-22
  • 网络出版日期:  2022-03-11

目录

    /

    返回文章
    返回