留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑温度和应力水平影响的水环境中GFRP的非线性蠕变模型

张颜锋 陆奇 李杏恩 朱四荣

张颜锋, 陆奇, 李杏恩, 等. 考虑温度和应力水平影响的水环境中GFRP的非线性蠕变模型[J]. 复合材料学报, 2024, 42(0): 1-9.
引用本文: 张颜锋, 陆奇, 李杏恩, 等. 考虑温度和应力水平影响的水环境中GFRP的非线性蠕变模型[J]. 复合材料学报, 2024, 42(0): 1-9.
ZHANG Yanfeng, LU Qi, LI Xingen, et al. Considering the influence of temperature and stress levels on the nonlinear creep model of GFRP in a water environment[J]. Acta Materiae Compositae Sinica.
Citation: ZHANG Yanfeng, LU Qi, LI Xingen, et al. Considering the influence of temperature and stress levels on the nonlinear creep model of GFRP in a water environment[J]. Acta Materiae Compositae Sinica.

考虑温度和应力水平影响的水环境中GFRP的非线性蠕变模型

详细信息
    通讯作者:

    朱四荣,博士,教授,博士生导师,研究方向为复合材料结构设计及复合材料长期力学性能 E-mail: zhusirong@whut.edu.cn

  • 中图分类号: TB332

Considering the influence of temperature and stress levels on the nonlinear creep model of GFRP in a water environment

  • 摘要: 针对去离子水环境中GFRP复合材料,研究了温度与应力水平对水环境中GFRP蠕变性能的影响。对试样用树脂封边处理后,采用恒载荷弯曲腐蚀试验机,进行了20%应力水平下,20℃、30℃、40℃、50℃、60℃条件下的长期蠕变实验,和30℃条件下,20%、30%、40%、50%等多种应力水平下的长期蠕变实验,分别研究了不同温度和不同应力水平对GFRP蠕变性能的影响,并量化了温度与应力水平对去离子水环境中GFRP的蠕变性能的综合影响,建立了改进Findley非线性蠕变模型。并通过短梁剪切法测试了去离子水环境对GFRP层间剪切强度的影响。结果表明,改进Findley非线性蠕变模型可描述GFRP在20~60℃、低于其蠕变断裂应力水平下的蠕变性能,适用范围广,准确性高,与实验结果吻合良好。根据此模型可预测GFRP在去离子水环境中不同温度不同应力水下的GFRP复合材料的长期蠕变性能,预测误差均在2%以内。去离子水对经过封边处理的GFRP试样的层间剪切强度影响甚小。本文所得结果为GFRP结构的设计提供依据。

     

  • 图  1  恒载荷腐蚀弯曲试验机

    Figure  1.  Constant load corrosion bending testing machine

    图  2  不同温度下GFRP复合材料挠度随时间的变化曲线

    Figure  2.  Curves of deflection of GFRP composites at different temperatures vs. time

    图  3  不同应力水平下GFRP复合材料挠度随时间的变化曲线

    Figure  3.  Curves of deflection of GFRP composites at different stress levels vs. time

    图  4  温度函数h1拟合曲线

    Figure  4.  Fitting curve of temperature function h1

    图  5  应力函数h2拟合曲线

    Figure  5.  Fitting curve of stress level function h2

    图  6  GFRP复合材料蠕变模型与试验结果对比

    Figure  6.  Comparison of creep model and test results of GFRP composites

    图  7  GFRP预测曲线与试验结果对比

    Figure  7.  Comparison of predicted curves with experimental results for GFRP

    表  1  GFRP复合材料的弯曲性能

    Table  1.   Banding property of GFRP composites

    σfEf
    Mean value568.8 MPa20.14 GPa
    Standard deviation65.583.17
    Coefficient of variation8.51%15.76%
    Notes: σf -Flexural strength; Ef -Flexural modulus.
    下载: 导出CSV

    表  2  GFRP复合材料层间剪切强度

    Table  2.   Inter-laminar shear strength of GFRP composites

    Groupwt/%τs/MPaLoss of strength
    A-49.72-
    B0.3547.244.99%
    C0.1248.033.40%
    Notes: wt−Moisture content;τs−Interlaminar shear strength.
    下载: 导出CSV

    表  3  GFRP复合材料不同温度下的参数h1(T)

    Table  3.   Parameter h1(T) at different temperatures of GFRP composites

    T/℃2030405060
    h10.01160.01530.02080.02970.0330
    R20.98950.97550.99560.96500.9956
    Notes: T-Temperature of the environment box; h1−Functions related to temperatures; R2−Goodness-of-fit.
    下载: 导出CSV

    表  4  GFRP复合材料不同应力水平下的参数h2(σ)

    Table  4.   Parameter h2(σ) at different stress levels of GFRP composites

    Stress level20%30%40%50%
    h21.0651.0781.1981.374
    R20.97550.97910.99710.9960
    Notes: h2−Functions related to stress level.
    下载: 导出CSV

    表  5  GFRP复合材料不同温度下的拟合优度R2

    Table  5.   Goodness of fit R2 of GFRP composites at different temperatures

    T/℃2030405060
    R20.9900.9760.9960.9650.996
    下载: 导出CSV

    表  6  GFRP复合材料不同应力水平下的拟合优度R2

    Table  6.   Goodness of fit R2 of GFRP composites under different stress levels

    Stress level20%30%40%50%
    R20.9760.9790.9970.996
    下载: 导出CSV

    表  7  各工况下GFRP的蠕变柔量预测值与试验值对比

    Table  7.   Comparison between the predicted value and the experimental value of the creep compliance of GFRP

    Test conditions 35℃-20%(500 h) 30℃-45%(500 h) 20℃-30%(500 h) 20℃-40%(1000 h)
    Creep compliance J0/10−11Pa-1 5.262 5.066 5.813 4.795
    Improve Findley predictions 1.0975 1.0887 1.0585 1.1186
    Creep compliance prediction /10-11Pa−1 5.775 5.515 6.153 5.364
    Test creep compliance /10-11Pa−1 5.777 5.581 6.074 5.427
    Deviations/% 0.034 1.183 1.300 1.161
    下载: 导出CSV
  • [1] 薛忠民. 中国玻璃钢/复合材料发展回顾与展望[J]. 玻璃钢/复合材料, 2015(1): 5-12.

    XUE Z M. Retrospect and prospect of development of FRP / CM in China[J] Fiber Reinforced Plastics/ Composites, 2015(1): 5-12(in Chinese).
    [2] 叶国锐, 晏义伍, 曹海琳. 氧化石墨烯改性玄武岩纤维及其增强环氧树脂复合材料性能[J]. 复合材料学报, 2014, 31(6): 1402-1408.

    YE G R, YAN Y W, CAO H L. Basalt fiber modified with graphene oxide and properties of its reinforced epoxy composites[J]. Acta Materiae Compositae Sinica, 2014, 31(6): 1402-1408(in Chinese).
    [3] Rafiee R. On the mechanical performance of glass-fibre-reinforced thermosetting-resin pipes: A review[J]. Composite Structures, 2016, 143: 151-164. doi: 10.1016/j.compstruct.2016.02.037
    [4] Rafiee R. Stochastic fatigue analysis of glass fiber reinforced polymer pipes[J]. Composite Structures, 2017, 167(1): 96-102.
    [5] Hollaway L C. A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties[J]. Construction and building materials, 2010, 24(12): 2419-2445. doi: 10.1016/j.conbuildmat.2010.04.062
    [6] Mohammed A A, Manalo A C, Ferdous W, et al. State-of-the-art of prefabricated FRP composite jackets for structural repair[J]. Engineering Science and Technology, an International Journal, 2020, 23(5): 1244-1258. doi: 10.1016/j.jestch.2020.02.006
    [7] Liu C, Fan X, Zhu M. Regulating the grinding performance of grindstones via using basalt fibers[J]. Tribology International, 2022, 173: 107611. doi: 10.1016/j.triboint.2022.107611
    [8] Katouzian M, Vlase S, Marin M, et al. Modeling Study of the Creep Behavior of Carbon-Fiber-Reinforced Composites: A Review[J]. Polymers, 2023, 15(1): 00194.
    [9] 宋寅搏, 陈务军, 高成军, 等. 飞艇用织物膜材单轴拉伸蠕变强度试验与模型[J]. 复合材料学报, 2022, 39(10): 5041-5048.

    SONG Yinbo, CHEN Wujun, GAO Chengjun, et al. Uniaxial tensile creep experiment and creep model of fabric for airship structures[J]. ActaMateriae Compositae Sinica, 2022, 39(10): 5041-5048(in Chinese)
    [10] Li M, Xing F, Li T, et al. Multiscale interfacial enhancement of surface grown carbon nanotubes carbon fiber composites[J]. Polymer Composites, 2023, 44(5): 2766-2777. doi: 10.1002/pc.27278
    [11] Tamrakar S, Ganesh R, Sockalingam S, et al. Strain rate-dependent large deformation inelastic behavior of an epoxy resin[J]. Journal of Composite Materials, 2020, 54(1): 71-87. doi: 10.1177/0021998319859054
    [12] 梁娜, 朱四荣, 陈建中. 一种新的聚合物基复合材料应力松弛经验模型[J]. 复合材料学报, 2017, 34(10): 2205-2210.

    LIANG N, ZHU S R, CHEN J Z. A new empirical model for stress relaxation of polymer matrix[J]. Acta Materiae Compositae Sinica, 2017, 34(10): 2205-2210(in Chinese).
    [13] 贾彩霞, 王乾, 任荣, 等. 超高分子量聚乙烯(UHMWPE)纤维表面处理对UHMWPE/环氧树脂复合材料界面性能的影响机制[J]. 复合材料学报, 2020, 37(3): 573-580.

    JIA C X, WANG Q, REN R, et al. Influence mechanism of ultra high molecular weight polyethylene(UHMWPE) fiber surface modification on interfacial performance of UHMWPE/epoxy composites[J], Acta Materiae Compositae Sinica 2020, 37(3); 573-580 ( in Chinese).
    [14] 别依诺, 朱四荣, 贺攀, 等. 纳米SiO2-硅烷协同改性对玄武岩纤维/环氧树脂复合材料力学性能及蠕变性能的影响[J]. 复合材料学报, 2022, 39(8): 3723-3732.

    BIE Y N, ZHU S R, HE P, et al. Effect of nano-SiO2 particles-silane synergistic modification on mechanical properties and creep properties of basalt fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3723-3732(in Chinese).
    [15] 栗越, 张京发, 易顺民, 等. 改性芳纶纤维增强木粉/高密度聚乙烯复合材料的力学性能[J]. 复合材料学报, 2019, 36(3): 638-645.

    LI Y, ZHANG J F, YI S M, et al. Mechanical properties of modified aramid fiber reinforced wood flour/ high density polyethylene composites[J]. Acta Materiae Compositae Sinica, 2019, 36(3): 638-645(in Chinese) .
    [16] 张尧, 朱四荣, 陆士平, 等. 考虑界面效应的 GFRP 复合材料蠕变模型[J]. 复合材料学报, 2021, 38(11): 3682-3692.

    ZHANG Yao, ZHU Sirong, LU Shiping, et al. Creep model of GFRP composites considering interface effect[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3682-3692(in Chinese).
    [17] Bank, L. C. , Mosallam, A. S. Creep and failure of a full-size fiber-reinforced plastic pultruded frame. Composites Engineering, 1992, 2 (3), 213–227.
    [18] Sá M F, Gomes A M, Correia J R, et al. Creep behavior of pultruded GFRP elements–Part 2: Analytical study[J]. Composite structures, 2011, 93(9): 2409-2418. doi: 10.1016/j.compstruct.2011.04.001
    [19] Sá M F, Gomes A M, Correia J R, et al. Creep behavior of pultruded GFRP elements–Part 1: Literature review and experimental study[J]. Composite Structures, 2011, 93(10): 2450-2459. doi: 10.1016/j.compstruct.2011.04.013
    [20] Bai, Y. , Keller, T[J]. Time dependence of material properties of FRP composites in fire. Journal of Composite Materials, 2009, 43(21): 2469-2484.
    [21] Tomlins P E, Read B E. Creep and physical ageing of polypropylene: a comparison of models[J]. Polymer, 1998, 39(2): 355-367. doi: 10.1016/S0032-3861(97)00258-9
    [22] Al-Rubaye M, Manalo A, Alajarmeh O, et al. Flexural behaviour of concrete slabs reinforced with GFRP bars and hollow composite reinforcing systems[J]. Composite Structures, 2020, 236: 111836. doi: 10.1016/j.compstruct.2019.111836
    [23] 中国国家标准化管理委员会. 玻璃纤维增强塑料树脂含量试验方法. GB/T 2577-2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Test method for resin content of glass fiber reinforced plastics: GB/T 2577-2005[S]. Beijing: China Standards Press, 2005(in Chinese)
    [24] 中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449-2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Fibre-reinforced plastic composites-Determination of flexural properties: GB/T 1449-2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [25] 中华人民共和国工业和信息化部. 纤维增强塑料短梁法测定层间剪切强度. JC/T 773-2010 [S]. 北京: 中国标准出版社, 2010.

    Ministry of Industry and Information Technology of the People's Republic of China. Fibre-reinforced plastics composites-Determination of apparent interlaminar shear strength by short‘beam method. JC/T 773-2010 [S]. Beijing: China Standards Press, 2010(in Chinese).
    [26] The British Standards Institution. GRP tanks and vessels for use above ground-Part 3: Design and workmanship: EN 13121-3-2016 [S]. London: BSI Standards Limited, 2016.
    [27] 中国国家标准化管理委员会. 纤维增强塑料设备和管道工程技术规范. GB51160-2016 [S]. 北京: 中国标准出版社, 2016.

    Standardization Administration of the People’s Republic of China. Technical code for fibre reinforced plastics equipment and piping engineering: GB51160-2016 [S]. Beijing: China Standards Press, 2016(in Chinese).
  • 加载中
计量
  • 文章访问数:  156
  • HTML全文浏览量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-26
  • 修回日期:  2024-01-18
  • 录用日期:  2024-01-28
  • 网络出版日期:  2024-03-14

目录

    /

    返回文章
    返回