留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BiOI/BiOBr0.9I0.1光催化剂的制备及其对2,4-二氯苯氧乙酸的降解性能

余关龙 王世涛 杨凯 孙琪芳 阳艺

余关龙, 王世涛, 杨凯, 等. BiOI/BiOBr0.9I0.1光催化剂的制备及其对2,4-二氯苯氧乙酸的降解性能[J]. 复合材料学报, 2023, 40(1): 201-211. doi: 10.13801/j.cnki.fhclxb.20220216.001
引用本文: 余关龙, 王世涛, 杨凯, 等. BiOI/BiOBr0.9I0.1光催化剂的制备及其对2,4-二氯苯氧乙酸的降解性能[J]. 复合材料学报, 2023, 40(1): 201-211. doi: 10.13801/j.cnki.fhclxb.20220216.001
YU Guanlong, WANG Shitao, YANG Kai, et al. Preparation of BiOI/BiOBr0.9I0.1 photocatalyst and its degradation performance on 2,4-dichlorophenoxyacetic acid[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 201-211. doi: 10.13801/j.cnki.fhclxb.20220216.001
Citation: YU Guanlong, WANG Shitao, YANG Kai, et al. Preparation of BiOI/BiOBr0.9I0.1 photocatalyst and its degradation performance on 2,4-dichlorophenoxyacetic acid[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 201-211. doi: 10.13801/j.cnki.fhclxb.20220216.001

BiOI/BiOBr0.9I0.1光催化剂的制备及其对2,4-二氯苯氧乙酸的降解性能

doi: 10.13801/j.cnki.fhclxb.20220216.001
基金项目: 长沙理工大学专业学位研究生“实践创新与创业能力提升计划”项目(SJCX202038);湖南省自然科学基金(2021JJ30728);湖南省生态环境厅科研项目(HBKT-2021012);湖南省教育厅重点项目(19A032)
详细信息
    通讯作者:

    余关龙,博士,副教授,硕士生导师,研究方向为光催化材料及污水处理  E-mail: ygl079@csust.edu.cn

  • 中图分类号: TB331

Preparation of BiOI/BiOBr0.9I0.1 photocatalyst and its degradation performance on 2,4-dichlorophenoxyacetic acid

Funds: Changsha University of Science and Technology Professional degree "Practical Innovation and Entrepreneurship Ability Training Program" Project (SJCX202038); Hunan Provincial Natural Science Foundation of China (2021JJ30728); Scientific Research Projects of Ecology and Environment Department of Hunan (HBKT- 2021012); Scientific Research Found of Hunan Provincial Education Department (19A032)
  • 摘要: 农药污染严重危害生态环境和饮用水安全。采用溶剂热法制备一种新型高效的BiOI/BiOBr0.9I0.1光催化剂。通过XRD、SEM、XPS、UV-vis DRS、PL、EIS等手段表征其结构、形貌和光学性能等理化性质。制备的BiOI/BiOBr0.9I0.1呈团簇状堆积结构,有助于活性位点的增加,固溶体和异质结两种策略的结合拓宽了BiOBr的光响应范围,有效防止光生电子-空穴对在BiOI/BiOBr0.9I0.1内部复合并提高产生光生载流子的氧化还原能力。光催化实验结果表明,合成的15wt%BiOI/BiOBr0.9I0.1在可见光下对2,4-二氯苯氧乙酸(2,4-D)有最佳的光催化性能,120 min降解2,4-D效率最高可达95%,4次循环实验后降解率仍达到80.9%。结合捕获实验与电子自旋共振(ESR)技术结果可以证实•O2和h+是主要的活性物种。制备的BiOBr0.9I0.1能有效调节BiOBr能带结构。BiOBr0.9I0.1和BiOI构成的异质结符合Z型异质结特点,构建异质结和固溶体两方法之间可在增强BiOBr光催化活性上产生协同作用。

     

  • 图  1  BiOBr、BiOI、BiOBr0.9I0.1和15wt%BiOI/BiOBr0.9I0.1的XRD图谱:(a) 10°~80°;(b) 26°~36°

    Figure  1.  XRD patterns of BiOBr, BiOI, BiOBr0.9I0.1 and 15wt%BiOI/BiOBr0.9I0.1: (a) 10°-80°; (b) 26°-36°

    图  2  BiOBr (a)、BiOI (b)、BiOBr0.9I0.1 (c)和15wt%BiOI/BiOBr0.9I0.1 (d)的SEM图像;15wt%BiOI/BiOBr0.9I0.1的EDS图像(e)

    Figure  2.  SEM images of BiOBr (a), BiOI (b) , BiOBr0.9I0.1 (c) and 15wt%BiOI/BiOBr0.9I0.1 (d); EDS diagram of 15wt%BiOI/BiOBr0.9I0.1 (e)

    图  3  BiOBr、BiOI、BiOBr0.9I0.1和15wt%BiOI/BiOBr0.9I0.1的XPS图谱:(a) 全谱;(b) Bi4f;(c) Br3d;(d) I3d;(e) O1s;(f) 价带(VB)-XPS

    Figure  3.  XPS spectra of BiOBr, BiOI, BiOBr0.9I0.1 and 15wt%BiOI/BiOBr0.9I0.1: (a) Survey; (b) Bi4f; (c) Br3d; (d) I3d; (e) O1s; (f) Valence band (VB)-XPS

    图  4  BiOBr、BiOI、BiOBr0.9I0.1和15wt%BiOI/BiOBr0.9I0.1的UV-Vis DRS图谱 (a) 和带隙图 (b)

    Figure  4.  UV-Vis DRS spectra (a) and band gap diagram (b) of BiOBr, BiOI, BiOBr0.9I0.1 and 15wt%BiOI/BiOBr0.9I0.1

    Eg—Band gap; α—Absorption coefficient; h—Planck constant; ν—Frequency

    图  5  BiOBr、BiOBr0.9I0.1和15wt%BiOI/BiOBr0.9I0.1的PL光谱

    Figure  5.  PL spectra of BiOBr, BiOBr0.9I0.1 and 15wt%BiOI/BiOBr0.9I0.1

    图  6  BiOBr、BiOI、BiOBr0.9I0.1和15wt%BiOI/BiOBr0.9I0.1的EIS交流阻抗谱

    Figure  6.  EIS Nyquist plots of BiOBr, BiOI, BiOBr0.9I0.1 and 15wt%BiOI/BiOBr0.9I0.1

    图  7  BiOBr、BiOI、BiOBrxI1-xPwt%BiOI/BiOBr0.9I0.1可见光降解2,4-二氯苯氧乙酸(2,4-D)曲线((a)、(b))及对应样品准一级动力学拟合((c)、(d))

    Figure  7.  Visible light degradation curves of 2,4-dichlorophenoxyaceticacid (2,4-D) by BiOBr, BiOI, BiOBrxI1-x and Pwt%BiOI/BiOBr0.9I0.1 ((a), (b)) and quasi-first-order kinetic fitting of corresponding samples ((c), (d))

    Ct—Concentration of 2,4-D at different time t; C0—Initial concentration of 2,4-D; Ka—Apparent rate constants

    图  8  15wt%BiOI/BiOBr0.9I0.1循环4次光催化降解图(a);循环前后15wt%BiOI/BiOBr0.9I0.1样品的XRD图(b)

    Figure  8.  Photocatalytic degradation after 4 cycles of 15wt%BiOI/BiOBr0.9I0.1 (a); XRD patterns of 15wt%BiOI/BiOBr0.9I0.1 before and after the cycling experiment (b)

    图  10  15wt%BiOI/BiOBr0.9I0.1样品5,5-二甲基-1-吡咯啉-N-氧化物(DMPO)-•O2 (a) 和2,2,6,6-四甲基-4-甲基哌啶(TEMPO)-h+ (b) 的电子自旋共振(ESR)光谱

    Figure  10.  Electron spin-resonance (ESR) spectra of 5,5-dimethyl-1-pyrroline-N-oxide (DMPO)-•O2 (a) and 2,2,6,6-tetramethylpiperidine (TEMPO)-h+ (b) in 15wt%BiOI/BiOBr0.9I0.1 samples

    图  9  添加不同捕获剂对15wt%BiOI/BiOBr0.9I0.1光催化效果的影响

    Figure  9.  Effect of adding different capture agents on the photocatalytic effect of 15wt%BiOI/BiOBr0.9I0.1

    IPA—Isopropyl alcohol; AA—Ascorbic acid; SO—Sodium oxalate

    图  11  15wt%BiOI/BiOBr0.9I0.1光催化机制示意图

    Figure  11.  Schematic diagram of the photocatalytic mechanism of 15wt%BiOI/BiOBr0.9I0.1

    NHE—Normal hydrogen electrode; E—Oxidation potential

  • [1] ALIKHANI N, FARHADIAN M, GOSHADROU A, et al. Photocatalytic degradation and adsorption of herbicide 2,4-dichlorophenoxyacetic acid from aqueous solution using TiO2/BiOBr/Bi2S3 nanostructure stabilizedon the activated carbon under visible light[J]. Environmental Nanotechnology, Monitoring & Management,2021,15:100415. doi: 10.1016/j.enmm.2020.100415
    [2] HA D D. Anaerobic degradation of 2,4-dichlorophenoxyacetic acid by Thauera sp. DKT[J]. Biodegradation,2018,29(5):499-510. doi: 10.1007/s10532-018-9848-7
    [3] SONG W J, WAN Y, JIANG Y, et al. Urinary concentrations of 2,4-D in repeated samples from 0-7 year old healthy children in central and south China[J]. Chemosphere,2021,267:129225. doi: 10.1016/j.chemosphere.2020.129225
    [4] VINAYAGAM R, PAI S D, MURUGESAN G, et al. Magnetic activated charcoal/Fe2O3 nanocomposite for the adsorptive removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous solutions: Synthesis, characterization, optimization, kinetic and isotherm studies[J]. Chemosphere,2022,286:131938. doi: 10.1016/j.chemosphere.2021.131938
    [5] MOREIRA R A, ROCHA G S, DA SILVA L C M, et al. Exposure to environmental concentrations of fipronil and 2,4-D mixtures causes physiological, morphological and biochemical changes in Raphidocelis subcapitata[J]. Ecotoxicolgy and Environmental Safety,2020,206:111180. doi: 10.1016/j.ecoenv.2020.111180
    [6] SALCEDO M F, MANSILLA A Y, COLMAN S L, et al. Efficacy of an organicallymodified bentonite to adsorb 2, 4-dichlorophenoxyacetic acid (2,4-D) and prevent its phytotoxicity[J]. Journal of Environmental Management,2021,297:113427. doi: 10.1016/j.jenvman.2021.113427
    [7] WANG J S, ZHANG C, POURSAT B A J, et al. Unravelling the contribution of nitrifying and methanotrophic bacteria to micropollutant cometabolism in rapid sand filters[J]. Journal of Hazardous Materials,2022,424:127760. doi: 10.1016/j.jhazmat.2021.127760
    [8] LI Y, LIN R Y, LV F J, et al. Tannic acid-Fe complex derivative-modified electrodewith pH regulating function for environmental remediation by electro-Fenton process[J]. Environmental Research,2022,204:111994.
    [9] UDDIN A, MUHMOOD T, GUO Z, et al. Hydrothermal synthesis of 3D/2D hetero-junctions of ZnIn2S4/oxygen doped g-C3-N4 nanosheet for visible light driven photocatalysis of 2,4-dichlorophenoxyacetic acid degradation[J]. Journal of Alloys and Compounds,2020,845:156206. doi: 10.1016/j.jallcom.2020.156206
    [10] LIU H J, WANG B J, CHEN M, et al. Simple synthesis of BiOAc/BiOBr heterojunction composites for the efficient photocatalytic removal of organic pollutants[J]. Separation and Purification Technology,2021,261:118286. doi: 10.1016/j.seppur.2020.118286
    [11] HU M, YAN A H, LI F, et al. Z-scheme indium sulfide/bismuth oxybromide heterojunctions with enhanced visible-light photodegradation of organics[J]. Applied Surface Science,2021,547:149234. doi: 10.1016/j.apsusc.2021.149234
    [12] LIANG Y J, ZENG Z K, YANG J, et al. Designing heterointerface in BiOBr/g-C3-N4 photocatalyst to enhance visible-light-driven photocatalytic performance in water purification[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,624:126796. doi: 10.1016/j.colsurfa.2021.126796
    [13] YAN X M, JI Q J, WANG C, et al. In situ construction bismuth oxycarbonate/bismuth oxybromide Z-scheme heterojunction for efficient photocatalytic removal of tetracycline and ciprofloxacin[J]. Journal of Colloid and Interface Science,2021,587:820-830. doi: 10.1016/j.jcis.2020.11.043
    [14] GUO J Q, LIAO X, LEE M H, et al. Experimental and DFT insights of the Zn-doping effects on the visible-light photocatalytic water splitting and dye decomposition over Zn-doped BiOBr photocatalysts[J]. Applied Catalysis B: Environmental,2019,243:502-512. doi: 10.1016/j.apcatb.2018.09.089
    [15] WU Y Y, JI H D, LIU Q M, et al. Visible light photocatalytic degradation of sulfanilamide enhanced by Mo doping of BiOBr nanoflowers[J]. Journal of Hazardous Materials,2022,424:127563. doi: 10.1016/j.jhazmat.2021.127563
    [16] HE J Y, LIU Y L, WANG M, et al. Ionic liquid-hydrothermal synthesis of Z-scheme BiOBr/Bi2WO6 heterojunction with enhanced photocatalytic activity[J]. Journal of Alloys and Compounds,2021,865:158760. doi: 10.1016/j.jallcom.2021.158760
    [17] ZHANG Y P, CAO P Y, ZHU X H, et al. Facile construction of BiOBr ultra-thin nano-roundels for dramatically enhancing photocatalytic activity[J]. Journal of Environtal Management,2021,299:113636. doi: 10.1016/j.jenvman.2021.113636
    [18] ZHANG H W, TEE J C L, JAENICKE S, et al. BiOBrnI1-n solid solutions as versatile photo oxidation catalysts for phenolics and endocrine disrupting chemicals[J]. Catalysis Today,2021,375:547-557. doi: 10.1016/j.cattod.2020.01.009
    [19] ZHOU P W, ZHANG L P, DAI Y M, et al. Construction of a metallic silver nanoparticle-decorated bismuth oxybromide-based composite material as a readily recyclable photocatalyst[J]. Journal of Cleaner Production,2020,246:119007. doi: 10.1016/j.jclepro.2019.119007
    [20] DENG F, LUO Y B, LI H, et al. Efficient toxicity elimination of aqueous Cr(VI) by positively-charged BiOClxI1-x, BiOBrxI1-x, and BiOClxBr1-x, solid solution with internal hole-scavenging capacity via the synergy of adsorption and photocatalytic reduction[J]. Journal of Hazardous Materials,2020,383:121127. doi: 10.1016/j.jhazmat.2019.121127
    [21] SHAO Y F, JI M X, ZHANG Y, et al. Integration of double halogen atoms in atomically thin bismuth bromide: Mutative electronic structure steering charge carrier migration boosted broad-spectrum photocatalysis[J]. Applied Surface Science,2021,541:148477. doi: 10.1016/j.apsusc.2020.148477
    [22] HUSSAIN M B, KHAN M S, LOUSSALA H M, et al. The synthesis of a BiOCl-xBr1-x nanostructure photocatalyst with high surface area for the enhanced visible light photocatalytic reduction of Cr(VI)[J]. RSC Advances,2020,10(8):4763-4771. doi: 10.1039/C9RA10256F
    [23] ZHOU K H, LIU Y, HAO J Y. One-pot hydrothermal synthesis of dual Z-scheme BiOBr/g-C3N4/Bi2WO6 and photocatalytic degradation of tetracycline under visible light[J]. Materials Letters,2020,281:128463. doi: 10.1016/j.matlet.2020.128463
    [24] FENG C Y, TANG L, DENG Y C, et al. Synthesis of branched WO3@W18O49 homojunction with enhanced interfacial charge separation and full-spectrum photocatalytic performance[J]. Chemical Engineering Journal,2020,389:124474. doi: 10.1016/j.cej.2020.124474
    [25] TONG Y H, YE S B, FANG X T, et al. ZnO-dispersedly-hybridizing BiOBr0.9I0.1 nanoflakes with p-type semiconducting character for improved photocatalysis[J]. Journal of Alloys and Compounds,2021,851:156888. doi: 10.1016/j.jallcom.2020.156888
    [26] YU H B, HUANG J H, JIANG L B, et al. In situ construction of Sn-doped structurally compatible heterojunction with enhanced interfacial electric field for photocatalytic pollutants removal and CO2 reduction[J]. Applied Catalysis B: Environmental,2021,298:120618. doi: 10.1016/j.apcatb.2021.120618
    [27] WANG J Z, WANG Y N, CAO C S, et al. Decomposition of highly persistent perfluorooctanoic acid by hollow Bi/Bi-OI1-x-Fx: Synergistic effects of surface plasmon resonance and modified band structures[J]. Journal of Hazardous Materials,2021,402:123459.
    [28] ZHENG Q, CAO Y H, HUANG N J B, et al. Selective exposure of BiOI oxygen-rich {110} facet induced by BN nanosheets for enhanced photocatalytic oxidation performance[J]. Acta Physico-Chimica Sinica,2020,37(8):2009063.
    [29] YU Q Q, CHEN J Y, LI Y X, et al. In situ decoration of metallic Bi on BiOBr with exposed (110) facets and surface oxygen vacancy for enhanced solar light photocatalytic degradation of gaseous n-hexane[J]. Chinese Journal of Catalysis,2020,41(10):1603-1612. doi: 10.1016/S1872-2067(19)63496-0
    [30] ZHAO C, LI Y, CHU H Y, et al. Construction of direct Z-scheme Bi5O7I/UiO-66-NH2 heterojunction photocatalysts for enhanced degradation of ciprofloxacin: Mechanism insight, pathway analysis and toxicity evaluation[J]. Journal of Hazardous Materials,2021,419:126466. doi: 10.1016/j.jhazmat.2021.126466
    [31] KONG L, GUO J Q, MAKEPEACE J W, et al. Rapid synthesis of BiOBrxI1-x photocatalysts: Insights to the visible-light photocatalytic activity and strong deviation from Vegard's law[J]. Catalysis Today,2019,335:477-484. doi: 10.1016/j.cattod.2019.02.013
    [32] REN X J, LI J B, CAO X Z, et al. Synergistic effect of internal electric field and oxygen vacancy on the photocatalytic activity of BiOBrxI1-x with isomorphous fluorine substitution[J]. Journal of Colloid and Interface Science,2019,554:500-511. doi: 10.1016/j.jcis.2019.07.034
    [33] KOU M P, DENG Y, ZHANG R M, et al. Molecular oxygen activation enhancement by BiOBr0.5I0.5/BiOI utilizing the synergistic effect of solid solution and heterojunctions for photocatalytic NO removal[J]. Chinese Journal of Catalysis,2020,41(10):1480-1487. doi: 10.1016/S1872-2067(20)63607-5
    [34] ZHONG S T, ZHOU H, SHEN M, et al. Rationally designed a g-C3N4/BiOI/Bi2O2CO3 composite with promoted photocatalytic activity[J]. Journal of Alloys and Compounds,2021,853:157307. doi: 10.1016/j.jallcom.2020.157307
    [35] GENG Q, XIE H T, HE Y, et al. Atomic interfacial structure and charge transfer mechanism on in-situ formed BiOI/Bi2O2SO4 p-n heterojunctions with highly promoted photocatalysis[J]. Applied Catalysis B: Environmental,2021,297:120492. doi: 10.1016/j.apcatb.2021.120492
    [36] LI X B, KANG B B, DONG F, et al. Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies[J]. Nano Energy,2021,81:105671. doi: 10.1016/j.nanoen.2020.105671
    [37] 杜春艳, 宋佳豪, 谭诗杨, 等. 石墨烯桥联的ZnO/Ag3PO4复合材料的制备及其对环丙沙星的降解性能[J]. 复合材料学报, 2021, 38(7):2254-2264.

    DU Chunyan, SONG Jiahao, TAN Shiyang, et al. Preparation of graphene bridged ZnO/Ag3PO4 compositeand its degradation performance for ciprofloxacin[J]. Acta Materiae Compositae Sinica,2021,38(7):2254-2264(in Chinese).
  • 加载中
图(11)
计量
  • 文章访问数:  914
  • HTML全文浏览量:  482
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-09
  • 修回日期:  2022-01-14
  • 录用日期:  2022-01-22
  • 网络出版日期:  2022-02-17
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回