留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维增强树脂基复合材料层合板胶螺混合连接失效机制

刘礼平 段科好 徐卓 冯振宇 蔺越国 郑亦媚 宋肖肖

刘礼平, 段科好, 徐卓, 等. 碳纤维增强树脂基复合材料层合板胶螺混合连接失效机制[J]. 复合材料学报, 2022, 40(0): 1-11
引用本文: 刘礼平, 段科好, 徐卓, 等. 碳纤维增强树脂基复合材料层合板胶螺混合连接失效机制[J]. 复合材料学报, 2022, 40(0): 1-11
Liping LIU, Kehao DUAN, Zhuo XU, Zhenyu FENG, Yueguo LIN, Yimei ZHENG, Xiaoxiao SONG. Failure mechanism of carbon fiber reinforced polymer bonded-bolted hybrid connection[J]. Acta Materiae Compositae Sinica.
Citation: Liping LIU, Kehao DUAN, Zhuo XU, Zhenyu FENG, Yueguo LIN, Yimei ZHENG, Xiaoxiao SONG. Failure mechanism of carbon fiber reinforced polymer bonded-bolted hybrid connection[J]. Acta Materiae Compositae Sinica.

碳纤维增强树脂基复合材料层合板胶螺混合连接失效机制

基金项目: 中央高校科研基本业务费(3122018D040)
详细信息
    通讯作者:

    刘礼平,博士,中国民航大学副教授,研究方向为复合材料结构修理 E-mail:liuliping_tj@163.com

  • 中图分类号: V260

Failure mechanism of carbon fiber reinforced polymer bonded-bolted hybrid connection

  • 摘要: 为研究碳纤维增强树脂基复合材料(CFRP)层合板单搭接双螺栓胶螺混合连接失效机制,采用基于断裂能断裂准则的连续渐进退化方式,仿真CFRP层合板刚度退化,采用基于能量的B-K准则仿真胶层的损伤演化,建立胶螺混合连接结构渐进损伤三维有限元模型,有限元模型预测的最大失效载荷与实验结果吻合较好。搭接长度La为影响胶螺混合接头刚度和强度的重要几何参数,螺栓的位置不会明显影响接头的刚度,粘结面积越大,强度越大。胶螺混合接头在拉伸载荷作用下,由于二次弯曲效应的影响,螺栓向左倾斜,搭接区域的胶层损伤起始于搭接区域胶层外侧,并由外侧向内部扩展到钉孔附近,当胶层损伤扩展到钉孔附近时,螺栓承载增加,胶层和螺栓共同承载,此时CFRP层合板开始出现损伤;最终,左侧钉孔处的上层合板和右侧钉孔处的下层合板产生分层损伤并发生断裂。

     

  • 图  1  单搭接双螺栓胶螺混合接头示意图

    Figure  1.  Single lap two-bolt bonded-bolted hybrid joint schematics

    L—Substrate length; W—Substrate width; t—Substrate thickness; ta—Adhesive thickness; La—Overlap length; E—Bolt-edge distance; Lj—Inter-bolt distance

    图  2  连续渐进损伤变量求解关系

    Figure  2.  Solution relationship of continuous progressive damage variable

    Eii —Young’s modulus; $ \varepsilon _{0,i}^{\text{T}} $—Element initial damage strain in tensile mode; $ \varepsilon _{{\text{f}},i}^{\text{T}} $—Element failure strain in tensile mode; ${\sigma ^{\text{T}}}$—Element initial damage stress in tensile mode

    图  3  复合材料层合板渐进损伤分析VUMAT流程图

    Figure  3.  VUMAT flow chart for progressive damage analysis of composite laminates

    图  4  单搭接双螺栓胶螺混合接头构型4载荷-位移曲线

    Figure  4.  Load-displacement curve of configuration 4 of single lap double-bolt bonded-bolted hybrid joint

    图  5  单搭接双螺栓胶螺混合接头5种构型的载荷-位移曲线

    Figure  5.  Load-displacement curves of five configurations of single lap double-bolt bonded-bolted hybrid joint

    图  6  单搭接双螺栓胶螺混合接头失效变形图

    Figure  6.  Failure deformation of single lap double-bolt bonded-bolted hybrid joint

    图  7  单搭接双螺栓胶螺混合接头钉孔处层合板基体失效图

    Figure  7.  Matrix failure diagram of laminate at bolt hole of single lap double-bolt bonded-bolted hybrid joint

    图  8  单搭接双螺栓胶螺混合接头胶层损伤扩展云图

    Figure  8.  Nephogram of damage expansion of adhesive layer of single lap double-bolt bonded-bolted hybrid joint

    图  9  单搭接双螺栓胶螺混合接头左侧钉孔处上层合板基体和纤维损伤扩展云图

    Figure  9.  Matrix and fiber damage expansion nephogram of the upper laminate at the bolt hole on the left of single lap double-bolt bonded-bolted hybrid joint

    图  10  单搭接双螺栓胶螺混合接头二次弯曲变形和临界位置示意图

    Figure  10.  Diagram of secondary bending deformation and critical position of single-lap double-bolt bonded-bolted hybrid joint

    图  11  “螺栓A”四个区域划分和受力分析

    Figure  11.  Four regions division and stress analysis of bolt 1

    图  12  螺栓四个不同区域法向接触力-时间曲线

    Figure  12.  Magnitude of total force due to contact pressure (CFNM)-time curves of four different regions of bolt

    图  13  单搭接双螺栓胶螺混合接头纵向断面宏观破坏形貌[17]

    Figure  13.  Macroscopic failure morphology of longitudinal cross-section of single-lap double-bolt bonded-bolted hybrid joint [17]

    表  1  单搭接双螺栓胶螺混合接头几何尺寸

    Table  1.   Single lap two-bolt bonded-bolted hybrid joint geometry mm

    ParameterConfiguration 1Configuration 2Configuration 3Configuration 4Configuration 5
    Overlap length La5050626274
    Bolt-edge distance E14814820
    Inter-bolt distance Lj2234344634
    下载: 导出CSV

    表  2  Cycom 5320 CFRP层合板材料参数

    Table  2.   Cycom 5320 CFRP laminate properties

    PropertyValue
    E11/GPa141
    E22=E33/GPa9.7
    G12=G13/GPa5.2
    G23/GPa3.4
    ν12=ν130.34
    ν230.44
    XT/MPa2703
    XC/MPa1737
    YT=ZT/MPa81
    YC=ZC/MPa312
    S12=S13=S23/MPa57
    Notes: Eii is the Young’s modulus; Gij is the shear modulus; νij is the Possion ratio; XT/C is the tension or compressive strength on the direction 1; YT/C is the tension or compressive strength on the direction 2; ZT/C is the tension or compressive strength on the direction 3; Sij is the shear strength. i,j=1,2,3.
    下载: 导出CSV

    表  3  Hysol EA9361胶层材料参数

    Table  3.   Material properties of Hysol EA9361 adhesive layer

    PropertyValue
    Enn/GPa5.14
    Ess=Ett/GPa1.74
    σ0,n/MPa14.6
    σ0,s/MPa27.5
    σ0,t/MPa27.5
    Gc,n= Gc,s= Gc,t/(N·mm−1)1.0
    Notes: Eii is the Young’s modulus; σ0,i is the initial damage stress of the cohesive element. i=n,s,t.
    下载: 导出CSV

    表  4  单搭接双螺栓胶螺混合接头最大失效载荷

    Table  4.   Ultimate failure load of single lap double-bolt bonded-bolted hybrid joint kN

    Configuration 1Configuration 2Configuration 3Configuration 4Configuration 5
    Experiment26.71±1.4329.46±1.2130.97±0.4930.75±1.6536.88±3.39
    FE model28.1128.9030.6531.8036.57
    Difference/%5.241.901.033.410.84
    下载: 导出CSV
  • [1] 聂恒昌, 谭日明, 郭霞, 等. 复合材料层合板机械连接修理拉伸性能[J]. 北京航空航天大学学报, 2016(2):318-327.

    NIE Hengchang, TAN Riming, GUO Xia, et al. Mechanical connection repair tensile properties of composite laminates[J]. Journal of Beijing University of Aeronautics and Astronautics,2016(2):318-327(in Chinese).
    [2] KELLY G. Quasi-static strength and fatigue life of hybrid (bonded/bolted) composite single-lap joints[J]. Composite Structures,2006,72(1):119-129. doi: 10.1016/j.compstruct.2004.11.002
    [3] HOANG-NGOC C T, PAROISSIEN E. Simulation of Single-Lap Bonded and Hybrid (Bolted/Bonded) Joints with Flexible Adhesive[J]. International Journal of Adhesion and Adhesives,2010,30(3):117-129. doi: 10.1016/j.ijadhadh.2009.12.002
    [4] SADOWSKI T, ZARZEKA-RACZKOWSKA E. Hybrid Adhesive Bonded and Riveted Joints – Influence of Rivet Geometrical Layout on Strength of Joints[J]. Archives of Metallurgy & Materials,2012,57(4):1127-1135.
    [5] CHOWDHURY N, CHIU W K, WANG J, et al. Static and fatigue testing thin riveted, bonded and hybrid carbon fiber double lap joints used in aircraft structures[J]. Composite Structures,2015,121:315-323. doi: 10.1016/j.compstruct.2014.11.004
    [6] CHOWDHURY N, CHIU W K, WANG J, et al. Experimental and finite element studies of bolted, bonded and hybrid step lap joints of thick carbon fibre/epoxy panels used in aircraft structures[J]. Composites Part B:Engineering,2016,100:68-77. doi: 10.1016/j.compositesb.2016.06.061
    [7] CHOWDHURY N M, WANG J, CHIU W K, et al. Experimental and finite element studies of thin bonded and hybrid carbon fibre double lap joints used in aircraft structures[J]. Composites Part B:Engineering,2016,85:233-242. doi: 10.1016/j.compositesb.2015.09.038
    [8] 库克超. CFRP/铝合金胶铆混合连接力学性能及疲劳强度分析[D]. 西安: 西安电子科技大学, 2018.

    KU Kechao. Analysis of Mechanical Properties and Fatigue Strength of CFRP/Aluminum Alloy Adhesive-rivet Hybrid Jointing[D]. Xian: Xidian University, 2018(in Chinese).
    [9] 高佳佳, 楚珑晟, 马天阳, 等. 纤维增强树脂基复合材料连接结构强度与失效分析[J]. 航空制造技术, 2020, 63(11):83-90.

    GAO Jiajia, CHU Longsheng, MA Tianyang, et al. Research on Strength and Failure Analysis of Fiber Reinforced Resin Matrix Composites[J]. Aeronautical Manufacturing Technology,2020,63(11):83-90(in Chinese).
    [10] LOPEZ-CRUZ P, LALIBERTE J, LESSARD L. Investigation of bolted/bonded composite joint behaviour using design of experiments[J]. Composite Structures,2017,170:192-201. doi: 10.1016/j.compstruct.2017.02.084
    [11] LI X, CHENG X, GUO X, et al. Tensile properties of a hybrid bonded/bolted joint: Parameter study[J]. Composite Structures,2020,245:112329. doi: 10.1016/j.compstruct.2020.112329
    [12] BARUT A, MADENCI E. Analysis of bolted–bonded composite single-lap joints under combined in-plane and transverse loading[J]. Composite Structures,2009,88(4):579-594. doi: 10.1016/j.compstruct.2008.06.003
    [13] 程小全, 汪源龙, 张纪奎, 等. 平面编织复合材料胶螺混合连接接头拉伸性能分析[J]. 固体力学学报, 2011, 32(4):346-352.

    CHEN Xiaoquan, WANG Yuanlong, Zhang Jikui, et al. Analysis of Tensile Performance of Plane Braided Composite Rubber-Spiral Hybrid Connection Joint[J]. Chinese Journal of Solid Mechanics,2011,32(4):346-352(in Chinese).
    [14] 刘志明, 许昶. 碳纤维增强环氧树脂复合材料与铝板胶螺混合连接接头失效仿真[J]. 复合材料学报, 2019, 36(10):2308-2315.

    LIU Zhiming, XU Chang. Failure simulation of carbon fiber reinforced epoxy resin composite-aluminum bonded-bolted hybrid joint[J]. Acta Materiae Compositae Sinica,2019,36(10):2308-2315(in Chinese).
    [15] SCHIJVE J, CAMPOLI G, MONACO A. Fatigue of structures and secondary bending in structural elements[J]. International Journal of Fatigue,2009,31(7):1111-1123. doi: 10.1016/j.ijfatigue.2009.01.009
    [16] ZHAO L, XIN A, LIU F, et al. Secondary bending effects in progressively damaged single-lap, single-bolt composite joints[J]. Results in Physics,2016,6:704-711. doi: 10.1016/j.rinp.2016.08.021
    [17] VSR A, HR B, LL A. A parametric study on static behavior and load sharing of multi-bolt hybrid bonded/bolted composite joints[J]. Composites Part B:Engineering,2021,217:108897. doi: 10.1016/j.compositesb.2021.108897
    [18] CHANG K J. On the maximum strain criterion—a new approach to the angled crack problem[J]. Engineering Fracture Mechanics,1981,14(1):107-124. doi: 10.1016/0013-7944(81)90021-7
    [19] FUCHS C, D Bhattacharyya, FAKIROV S. Microfibril reinforced polymer–polymer composites: Application of Tsai-Hill equation to PP/PET composites[J]. Composites Science & Technology,2006,66(16):3161-3171.
    [20] PANG S S, PANDIAN A, BRADSHAW R D. Modified Tsai-Wu failure criterion for fiber-reinforced composite laminates[J]. Polymer Composites,1992,13(4):273-277. doi: 10.1002/pc.750130404
    [21] HASHIN Z. Fatigue Failure Criteria for Unidirectional Fiber Composites[J]. Journal of Applied Mechanics,1981:846-852.
    [22] XU P, ZHOU Z, LIU T, et al. Propagation of damage in bolt jointed and hybrid jointed GLARE structures subjected to the quasi-static loading[J]. Composite Structures,2019,218:79-94. doi: 10.1016/j.compstruct.2019.03.047
    [23] ZHANG K, HU J, ZOU P, et al. Effect of secondary bending and bolt load on damage and strength of composite single-lap interference-fit bolted structures[J]. Journal of Composite Materials,2019,53(28-30):4385-4398. doi: 10.1177/0021998319857463
    [24] RAYENI H K, MAZAHERI A H, TAHERI-BEHROOZ F. Strength prediction of woven composite rings using progressive damage modeling[J]. International Journal of Damage Mechanics,2020,29(6):851-873. doi: 10.1177/1056789519901294
    [25] SOUTIS C, DUAN D M, GOUTAS P. Compressive behaviour of CFRP laminates repaired with adhesively bonded external patches[J]. Composite Structures,1999,45(4):289-301. doi: 10.1016/S0263-8223(99)00033-1
    [26] 贾利勇, 贺高, 把余炜. 三维渐进失效模型在层压板失效分析中的应用[C]//第17届全国复合材料学术会议, 2012.

    JIA Liyong, HE Gao, BA Yuwei. 3D Progressive failure model for composite laminates failure analysis[C]//17th National Conference on Composite Materials, 2012(in Chinese).
    [27] 乔玉, 周光明, 刘伟先, 等. 复合材料阶梯形胶接接头渐进损伤分析[J]. 南京航空航天大学学报, 2014, 46(4):632-637. doi: 10.3969/j.issn.1005-2615.2014.04.022

    QIAO Yu, ZHOU Guangming, LIU Weixian, et al. Progressive damage analysis for stepped-lap joints of adhesive-bonded composite[J]. Journal of Nanjing University of Aeronautics & Astronautics,2014,46(4):632-637(in Chinese). doi: 10.3969/j.issn.1005-2615.2014.04.022
    [28] 王志强. 复合材料层压板螺栓连接性能分析[D]. 哈尔滨工程大学, 2010.

    WANG Zhiqiang. Properties analysis of the composites laminates bolted joints[D]. Harbin Engineering University, 2010(in Chinese).
  • 加载中
计量
  • 文章访问数:  142
  • HTML全文浏览量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-10
  • 录用日期:  2022-01-18
  • 修回日期:  2022-01-07
  • 网络出版日期:  2022-02-26

目录

    /

    返回文章
    返回