留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子氧环境下SiC基防热材料主/被动氧化在线识别及演化

金华 张劭捷 李哲文 张结艳 米智彤 许承海

金华, 张劭捷, 李哲文, 等. 原子氧环境下SiC基防热材料主/被动氧化在线识别及演化[J]. 复合材料学报, 2023, 40(8): 4792-4801. doi: 10.13801/j.cnki.fhclxb.20221018.001
引用本文: 金华, 张劭捷, 李哲文, 等. 原子氧环境下SiC基防热材料主/被动氧化在线识别及演化[J]. 复合材料学报, 2023, 40(8): 4792-4801. doi: 10.13801/j.cnki.fhclxb.20221018.001
JIN Hua, ZHANG Shaojie, LI Zhewen, et al. On-line identification and evolution of active and passive oxidation for SiC-based thermal protection materials in atomic oxygen environment[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4792-4801. doi: 10.13801/j.cnki.fhclxb.20221018.001
Citation: JIN Hua, ZHANG Shaojie, LI Zhewen, et al. On-line identification and evolution of active and passive oxidation for SiC-based thermal protection materials in atomic oxygen environment[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4792-4801. doi: 10.13801/j.cnki.fhclxb.20221018.001

原子氧环境下SiC基防热材料主/被动氧化在线识别及演化

doi: 10.13801/j.cnki.fhclxb.20221018.001
基金项目: 国家自然科学基金(11972136);特种环境复合材料技术国防科技重点实验室科学基金(纵20220092)
详细信息
    通讯作者:

    金华,博士,副教授,研究方向为超常服役环境下热防护材料行为及新型热防护机制与材料 E-mail: huaj@xmu.edu.cn

  • 中图分类号: V254.2;TB333

On-line identification and evolution of active and passive oxidation for SiC-based thermal protection materials in atomic oxygen environment

Funds: National Natural Science Foundation of China (11972136); Science Foundation of National Defense Science and Technology Key Laboratory of Special Environmental Composite Technology (20220092)
  • 摘要: 当前,高超声速飞行器主流SiC基防热材料在1200~1700℃内的防热机制主要依靠SiC被动氧化生成的SiO2保护层,但高超声速飞行带来的高温气体效应使得防热材料遭受高温、低压、原子氧载荷,原子氧的高活性将改变SiC氧化反应类型,导致材料丧失防护能力。因此,判别不同飞行工况下材料主/被动氧化类型将直接决定材料的使用阈值,对于高超声速飞行器防热设计和新型防热材料研制极为重要。基于此,本文打破通过分析氧化反应后材料微观成分辨别主/被动氧化反应的传统方法,基于光谱诊断、射频等离子放电及高功率激光技术,建立高温、低压、原子氧环境下SiC基防热材料主/被动氧化反应在线识别方法与系统,实现了SiC基防热材料主/被动氧化反应快速在线识别,经过SEM、EDS和XRD等材料分析,验证了在线识别方法的准确性和可靠性,进一步探究了原子氧环境下SiC材料主动氧化的演化规律,并建立了氧化动力学方程,为SiC基防热材料防护阈值及材料性能改进提供了重要支撑。

     

  • 图  1  原子环境下主/被动氧化在线识别系统

    Figure  1.  On-line identification system of active and passive oxidation in atomic environment

    图  2  基于光谱诊断(OES)的原子测试示意图

    CCD—Charge coupled devices; PMT—Photomultiplier tubes

    Figure  2.  Atomic test diagram based on optical emission spectrometer (OES)

    图  3  SiC主/被动氧化发射光谱对比

    Figure  3.  Comparison of active and passive oxidation emission spectra of SiC

    图  4  主/被动氧化试样

    Figure  4.  Active and passive oxidation samples

    图  5  原子氧氧化中的SiC和C/SiC试样

    Figure  5.  SiC and C/SiC samples in atomic oxygen oxidation

    图  6  不同试验条件下SiC材料表面发射光谱图像

    Figure  6.  OES images of SiC material surface under different test conditions

    图  7  各SiC试样氧化后SEM组织形貌:(a) 试样3#表面;(b) 试样7#表面;(c) 试样3#截面;(d) 试样7#截面;(e) 试样2#表面;(f) 试样4#表面;(g) 试样6#表面;(h) 试样8#表面

    Figure  7.  Microstructures and morphologies of SEM after oxidation of SiC samples: (a) Sample 3# surface; (b) Sample 7# surface; (c) Sample 3# section; (d) Sample 7# section; (e) Sample 2# surface; (f) Sample 4# surface; (g) Sample 6# surface; (h) Sample 8# surface

    图  8  各SiC试样表面XRD图谱

    Figure  8.  XRD patterns on the surface of SiC samples

    图  9  不同温度下SiC材料氧化3 min后试样质量变化

    Figure  9.  Quality change of SiC material after 3 min oxidation at different temperatures

    图  10  不同温度的SiC材料原子氧氧化后显微组织:(a) SiC-O-1350表面;(b) SiC-O-1400表面;(c) SiC-O-1500表面;(d) SiC-O-1600表面;(e) SiC-O-1350截面;(f) SiC-O-1600截面

    Figure  10.  Microstructures of SiC materials after atomic oxygen oxidation at different temperatures: (a) SiC-O-1350 surface; (b) SiC-O-1400 surface; (c) SiC-O-1500 surface; (d) SiC-O-1600 surface; (e) SiC-O-1350 section; (f) SiC-O-1600 section

    图  11  SiC材料在原子氧介质下的氧化质量损失

    Δm/A—Mass change per unit surface area; R2—Linear correlation coefficient

    Figure  11.  Oxidation mass loss of SiC materials in atomic oxygen medium

    图  12  C-1# 被动氧化反应后的表面微观形貌

    Figure  12.  Surface morphology after passive oxidation of C-1#

    图  13  C-3#主动氧化反应后的表面微观形貌

    Figure  13.  Surface morphology after active oxidation of C-3#

    表  1  试验条件

    Table  1.   Test condition

    Condition Temperature/℃ Pressure/Pa
    1# 1160 20
    2# 1300 20
    3# 1375 20
    4# 1375 50
    5# 1430 50
    6# 1430 100
    7# 1500 100
    8# 1500 150
    9# 1500 250
    下载: 导出CSV

    表  2  不同温度下SiC材料的氧化速率

    Table  2.   Oxidation rates of SiC materials at different temperatures

    Temperature/℃ Oxidation rates r/(g·min−1)
    13500.00647
    14000.00694
    15000.00853
    16000.01187
    下载: 导出CSV

    表  3  C/SiC材料主/被动氧化试验条件

    Table  3.   Active and passive oxidation test conditions of C/SiC materials

    SerialTemperature/℃Pressure/PaSpectral signal
    Mass change/mg
    C-1#127028False−35.2
    C-2#135028False−72.3
    C-3#140028True−90.6
    C-4#1400100False−78.4
    C-5#150028True−115.4
    C-6#160027True−134.8
    C-7#1600100False−128.4
    C-8#165027True−150.4
    下载: 导出CSV
  • [1] JACOBSON N S, MYERS D L. Active oxidation of SiC[J]. Oxidation of Metals,2011,75(1):1-25.
    [2] WAGNER C. Passivity during the oxidation of silicon at elevated temperatures[J]. Journal of Applied Physics,1958,29(9):1295-1297. doi: 10.1063/1.1723429
    [3] CHATILLON C, TEYSSANDIER F. Thermodynamic assessment of the different steps observed during SiC oxidation[J]. Journal of the European Ceramic Society,2022,42(4):1175-1196. doi: 10.1016/j.jeurceramsoc.2021.11.064
    [4] MOMOZAWA A, YOKOTE N, TERUTSUKI D, et al. Dyna-mic oxidation of SiC with arc-heated plasma wind tunnel and laser heating[J]. Vacuum,2021,185:109899. doi: 10.1016/j.vacuum.2020.109899
    [5] YANG L W, XIAO X R, JING L, et al. Dynamic oxidation mechanism of SiC fiber reinforced SiC matrix composite in high-enthalpy plasmas[J]. Journal of the European Ceramic Society,2021,41(10):5388-5393. doi: 10.1016/j.jeurceramsoc.2021.03.064
    [6] ANDERSON J D. Hypersonic and high temperature gas dynamics[M]. 1801 Alexander Bell Drive reston VA 20191: McGraw-Hill Inc, 2000: 361-363.
    [7] PARK T, PARK C, JUNG J, et al. Investigation of silicon carbide oxidation mechanism using ReaxFF molecular dynamics simulation[J]. Journal of Spacecraft and Rockets,2020,57(6):1328-1334. doi: 10.2514/1.A34669
    [8] KUBOTA Y, TANAKA H, ARAI Y, et al. Oxidation behavior of ZrB2-SiC-ZrC at 1700℃[J]. Journal of the European Ceramic Society,2017,37(4):1187-1194. doi: 10.1016/j.jeurceramsoc.2016.10.034
    [9] CHEN S Y, ZENG Y, XIONG X, et al. Static and dynamic oxidation behaviour of silicon carbide at high tempera-ture[J]. Journal of the European Ceramic Society,2021,41(11):5445-5456. doi: 10.1016/j.jeurceramsoc.2021.04.040
    [10] MONTEVERDE F, SAVINO R, FUMO M D S. Dynamic oxidation of ultra-high temperature ZrB2-SiC under high enthalpy supersonic flows[J]. Corrosion Science,2011,53(3):922-929. doi: 10.1016/j.corsci.2010.11.018
    [11] 洪智亮, 张巧君, 李开元, 等. SiC/SiC复合材料在高温空气中的氧化行为[J]. 材料工程, 2021, 49(5):144-150. doi: 10.11868/j.issn.1001-4381.2020.001169

    HONG Zhiliang, ZHANG Qiaojun, LI Kaiyuan, et al. Oxidation behavior of SiC/SiC composites in air at high temperature[J]. Journal of Materials Engineering,2021,49(5):144-150(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.001169
    [12] YOU N N, LIU X Y, HAO J L, et al. Microwave plasma oxidation kinetics of SiC based on fast oxygen exchange[J]. Vacuum,2020,182:109762. doi: 10.1016/j.vacuum.2020.109762
    [13] BALAT-PICHELIN M, BEDRA L, GERASIMOVA O, et al. Recombination of atomic oxygen on α-Al2O3 at high temperature under air microwave-induced plasma[J]. Chemical Physics,2007,340(1-3):217-226. doi: 10.1016/j.chemphys.2007.09.019
    [14] OSAWA H, SUZUKI T, TAKAYANAGI H, et al. Characteristics of O2-Ar inductively coupled plasma test flow during catalytic recombination processes[J]. Journal of Thermophysics and Heat Transfer,2013,27(1):30-41. doi: 10.2514/1.T3722
    [15] MARSCHALL J, FLETCHER D G. High-enthalpy test envi-ronments, flow modeling and in situ diagnostics for characterizing ultra-high temperature ceramics[J]. Journal of the European Ceramic Society,2010,30(11):2323-2336. doi: 10.1016/j.jeurceramsoc.2010.01.010
    [16] BALAT P M. Determination of the active-to-passive transition in the oxidation of silicon carbide in standard and microwave-excited air[J]. Journal of the European Ceramic Society,1996,16(1):55-62. doi: 10.1016/0955-2219(95)00104-2
    [17] PELLEGRINI C, BALAT-PICHELIN M, RAPAUD O, et al. Oxidation resistance of Zr- and Hf-diboride composites containing SiC in air plasma up to 2600 K for aerospace applications[J]. Ceramics International,2022,48(2):2177-2190. doi: 10.1016/j.ceramint.2021.09.310
    [18] ZOU J, RUBIO V, BINNER J. Thermoablative resistance of ZrB2-SiC-WC ceramics at 2400℃[J]. Acta Materialia,2017,133:293-302. doi: 10.1016/j.actamat.2017.05.033
    [19] PARK J Y, KIM D, LEE H G, et al. Oxidation behaviors of SiCf/SiC composites tested at high temperature in air by an ablation method[J]. Journal of the Korean Ceramic Society,2018,55(5):498-503. doi: 10.4191/kcers.2018.55.5.03
    [20] YANG L W, XIAO X R, LIU L P, et al. Dynamic oxidation mechanism of carbon fiber reinforced SiC matrix composite in high-enthalpy and high-speed plasmas[J]. Journal of Advanced Ceramics,2022,11(2):365-377. doi: 10.1007/s40145-021-0540-8
    [21] VRLINIČ T, VESEL A, CVELBAR U, et al. Rapid surface functionalization of poly(ethersulphone) foils using a highly reactive oxygen-plasma treatment[J]. Surface and Interface Analysis,2007,39(6):476-481. doi: 10.1002/sia.2548
    [22] JIN H, MENG S H, ZHANG X H, et al. Effects of oxidation temperature, time, and ambient pressure on the oxidation of ZrB2-SiC-graphite composites in atomic oxygen[J]. Journal of the European Ceramic Society,2016,36(8):1855-1861. doi: 10.1016/j.jeurceramsoc.2016.02.043
    [23] ZENG Q X, JIN H, MENG S H, et al. Spatially resolved ground state atomic oxygen density during the mode transition of inductively coupled oxygen plasmas[J]. Vacuum,2019,164:98-104. doi: 10.1016/j.vacuum.2019.03.009
    [24] 赵国利. 双频容性耦合等离子体的光谱诊断研究[D]. 大连: 大连理工大学, 2010.

    ZHAO Guoli. Spectroscopic diagnostics of a dual-frequency capacitively coupled plasma[D]. Dalian: Dalian University of Technology, 2010(in Chinese).
    [25] 金华. 防热材料表面催化特性测试与评价方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    JIN Hua. Surface catalyticity properties testing and characterization methods of thermal protection materials[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).
    [26] WOOLDRIDGE M S, DANCZYK S A, WU J. Quantitative evaluation of vibrational excitation of SiO A1Π–X1Σ+ flame emission from a silane/hydrogen/oxygen/argon diffusion flame[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2000,64(6):573-584. doi: 10.1016/S0022-4073(99)00136-3
    [27] PANERAI F, HELBER B, CHAZOT O, et al. Surface temperature jump beyond active oxidation of carbon/silicon carbide composites in extreme aerothermal conditions[J]. Carbon,2014,71:102-119. doi: 10.1016/j.carbon.2014.01.018
    [28] KUBOTA Y, HATTA H, YOSHINAKA T, et al. Use of volume element methods to understand experimental differences in active/passive transitions and active oxidation rates for SiC[J]. Journal of the American Ceramic Society,2013,96(4):1317-1323. doi: 10.1111/jace.12141
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  570
  • HTML全文浏览量:  290
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-02
  • 修回日期:  2022-09-23
  • 录用日期:  2022-10-12
  • 网络出版日期:  2022-10-19
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回