留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冻融循环对FRP片材-砌块界面粘结性能的影响

王作虎 王江北 申书洋 陈礼

王作虎, 王江北, 申书洋, 等. 冻融循环对FRP片材-砌块界面粘结性能的影响[J]. 复合材料学报, 2022, 39(11): 5275-5286. doi: 10.13801/j.cnki.fhclxb.20220110.003
引用本文: 王作虎, 王江北, 申书洋, 等. 冻融循环对FRP片材-砌块界面粘结性能的影响[J]. 复合材料学报, 2022, 39(11): 5275-5286. doi: 10.13801/j.cnki.fhclxb.20220110.003
WANG Zuohu, WANG Jiangbei, SHEN Shuyang, et al. Effect of freeze-thaw cycles on bond properties of FRP sheet-brick[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5275-5286. doi: 10.13801/j.cnki.fhclxb.20220110.003
Citation: WANG Zuohu, WANG Jiangbei, SHEN Shuyang, et al. Effect of freeze-thaw cycles on bond properties of FRP sheet-brick[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5275-5286. doi: 10.13801/j.cnki.fhclxb.20220110.003

冻融循环对FRP片材-砌块界面粘结性能的影响

doi: 10.13801/j.cnki.fhclxb.20220110.003
基金项目: 国家重点研发计划(2016YFC0701104);国家自然科学基金(51421005;51878028)
详细信息
    通讯作者:

    王作虎,博士,副教授,研究方向为钢筋混凝土结构及砌体结构加固 E-mail: wangzuohu@bucea.edu.cn

  • 中图分类号: TU375

Effect of freeze-thaw cycles on bond properties of FRP sheet-brick

  • 摘要: 研究了冻融循环对纤维增强树脂复合材料(FRP)加固砌块界面粘结性能的影响,分别采用碳纤维增强树脂复合材料(CFRP)片材和玻璃纤维增强树脂复合材料(GFRP)片材对烧结黏土砖和页岩砖进行了加固,通过试验研究了不同冻融次数条件下砖、砂浆、FRP片材和树脂各种材料性能的变化及FRP片材与砌体间的正拉粘结强度和单面剪切强度的变化规律。研究结果表明,冻融循环对黏土砖、页岩砖、砂浆块、CFRP片材、GFRP片材和粘贴环氧树脂的力学性能产生了显著的影响,均随着冻融次数的增加而明显降低;FRP片材与砖砌块界面间的正拉粘结强度和单面剪切强度随着冻融循环次数的增加而逐渐降低,经过30次冻融循环后FRP片材加固单砖的正拉粘结强度最大会降低45.49%,单面剪切强度最大可降低42.26%;FRP片材的种类对不同冻融次数条件下FRP片材-砌体的正拉粘结强度几乎没有影响,但对单面剪切强度有一定的影响。

     

  • 图  1  快速冻融设备

    Figure  1.  Rapid freezing and thawing equipment

    图  2  试件尺寸详图

    FRP—Fiber reinforced polymer

    Figure  2.  Specimens size details

    图  3  材性试验装置

    Figure  3.  Test devices of material mechanical properties

    图  4  正拉粘结强度试验构件尺寸

    Figure  4.  Specimen size details of pull-off strength

    图  5  正拉试验装置

    Figure  5.  Test device of pull-off strength

    图  6  单面剪切试验试件尺寸详图

    Figure  6.  Specimen size details of single-lap shear bond

    图  7  单面剪切试验装置

    Figure  7.  Test device of single-lap shear bond

    图  8  砖砌体和砂浆试块抗压强度随冻融次数的变化图

    Figure  8.  Variation of compressive strength of brick and mortar with freeze-thaw times

    图  9  冻融循环次数对纤维增强树脂复合材料(FRP)片材性能的影响

    CFRP—Carbon fiber reinforced polymer; GFRP—Glass fiber reinforced polymer

    Figure  9.  Effect of freeze-thaw cycle times on properties of fiber reinforced polymer (FRP) sheet

    图  10  冻融循环次数对环氧树脂性能的影响

    Figure  10.  Effect of freeze-thaw cycle times on properties of epoxy resin

    图  11  FRP片材-砌块正拉粘结强度试验典型破坏模式

    Figure  11.  Typical failure modes of FRP sheet-brick in pull-off test

    图  12  冻融次数对CFRP片材-单砖正拉粘结强度的影响

    Figure  12.  Variation of pull-off debonding strength of CFRP sheet-brick owing to freeze-thaw times

    图  13  不同种类FRP片材加固单砖的正拉粘结强度

    Figure  13.  Effect of FRP types on pull-off debonding strength of FRP sheet-brick

    图  14  砂浆缝对CFRP片材加固页岩单砖和页岩砖墙正拉粘结强度的影响

    Figure  14.  Effect of mortar on pull-off debonding strength of CFRP sheet-shale brick and masonry

    图  15  FRP片材加固单砖和砖墙典型破坏模式

    Figure  15.  Typical failure modes of FRP sheet-brick and masonry in single-lap shear bond test

    图  16  冻融次数对FRP片材加固单砖和砖墙单面剪切强度的影响

    Figure  16.  Variation of single-lap shear debonding strength of FRP sheet-brick and masonry owing to freeze-thaw times

    图  17  FRP片材种类对FRP片材加固单砖单面剪切强度的影响

    Figure  17.  Effect of FRP sheet types on single-lap shear debonding strength of FRP sheet-brick

    图  18  砂浆缝对FRP片材加固砌体单面剪切强度的影响

    Figure  18.  Effect of mortar on single-lap shear debonding strength of FRP sheet-masonry

    图  19  FRP片材-砌块单面剪切强度的劣化曲线

    Figure  19.  Modeled degradation curves of single-lap shear debonding strength of FRP sheet-brick

    ${\sigma}_{(N)} $—Single-lap shear debonding strength of FRP sheet-brick after exposure to N times freeze-thaw cycle; ${\sigma}_{(0)} $—Single-lap shear debonding strength of FRP sheet-brick without freeze-thaw cycle

    图  20  砂浆抗压强度的劣化曲线

    Figure  20.  Modeled degradation curve of mortar

    图  21  FRP片材-砖墙单面剪切强度计算结果的误差分析

    Fcal—Calculation results of shear strength; Ftest—Experimental result of shear strength

    Figure  21.  Error in single-lap shear strength calculation results of FRP sheet-masonry

    表  1  FRP片材-砌块正拉粘结强度试验结果

    Table  1.   Test results of pull-off strength of FRP sheet-brick and masory

    Freeze-thaw timeFRP typeBlock typeFpull/NChanging range/%Block typeFpull/NChanging range/%
    0CFRP sheetClay brick3300.09Clay masonry2954.31
    5CFRP sheetClay brick2834.7614.10
    10CFRP sheetClay brick2609.4220.93Clay masonry2376.5919.56
    20Clay masonry2305.4621.96
    30CFRP sheetClay brick2362.8628.40Clay masonry2147.9227.30
    0GFRP sheetClay brick3404.27
    5GFRP sheetClay brick2867.2715.77
    10GFRP sheetClay brick2569.7924.51
    30GFRP sheetClay brick2535.8225.51
    0CFRP sheetShale brick6111.55Shale masonry5674.67
    10CFRP sheetShale brick6089.770.36Shale masonry5432.184.27
    20CFRP sheetShale brick5645.227.63Shale masonry5321.776.22
    30CFRP sheetShale brick4180.5031.60Shale masonry4025.7629.06
    0GFRP sheetShale brick6446.76
    10GFRP sheetShale brick6269.082.76
    20GFRP sheetShale brick5093.3820.99
    30GFRP sheetShale brick3513.9745.49
    Note: Fpull—Pull-off strength of FRP sheet-brick and masonry.
    下载: 导出CSV

    表  2  FRP片材加固单砖和砖墙的单面剪切试验结果

    Table  2.   Test results of FRP sheet-brick and masonry in single-lap shear bond test

    Freeze-thaw timeFRP typeBlock typeFshear/NChanging range/%Block typeFshear/NChanging range/%
    0CFRP sheetClay brick9860.57Clay masonry8239.11
    5CFRP sheetClay brick9145.317.25
    10CFRP sheetClay brick8510.1613.70Clay masonry8010.502.77
    20Clay masonry5280.5035.91
    30CFRP sheetClay brick7722.3621.68Clay masonry4757.3342.26
    0GFRP sheetClay brick9268.90Clay masonry9506.48
    5GFRP sheetClay brick8444.328.90
    10GFRP sheetClay brick7909.6014.67Clay masonry8375.5011.90
    20Clay masonry7795.0018.00
    30GFRP sheetClay brick6707.1727.64Clay masonry6153.6735.27
    0CFRP sheetShale brick11080.98Shale masonry10984.59
    10CFRP sheetShale brick10483.915.39Shale masonry10112.007.94
    20CFRP sheetShale brick9032.1618.49Shale masonry8675.5021.02
    30CFRP sheetShale brick7013.8136.70Shale masonry6707.3338.94
    0GFRP sheetShale brick11358.93Shale masonry9967.78
    10GFRP sheetShale brick10372.808.68Shale masonry9690.502.78
    20GFRP sheetShale brick9274.1318.35Shale masonry8051.6719.22
    30GFRP sheetShale brick8250.5927.36Shale masonry7211.0027.66
    Note: Fshear—Single-lap shear strength of FRP sheet-brick and masonry.
    下载: 导出CSV
  • [1] 王作虎, 杨文雄, 刘杜. FRP布加固砌体结构界面粘结性能的研究进展[J]. 玻璃钢/复合材料, 2018, 288(1):103-107.

    WANG Zuohu, YANG Wenxiong, LIU Du. Research progress on interfacial adhesion of FRP-strengthened masonry structures[J]. Fiber Reinforced Plastics/Compo-sites,2018,288(1):103-107(in Chinese).
    [2] 王作虎, 申书洋, 杨菊, 等. FRP布加固结构粘结界面耐久性的研究进展[J]. 复合材料科学与工程, 2020, 318(7):117-122. doi: 10.3969/j.issn.1003-0999.2020.07.019

    WANG Zuohu, SHEN Shuyang, YANG Ju, et al. Research progress on durability of bond interface of FRP sheet reinforced structures[J]. Composites Science and Engineering,2020,318(7):117-122(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.07.019
    [3] BABATUNDE S A. Review of strengthening techniques for masonry using fiber reinforced polymers[J]. Composite Structures,2017,161:246-255. doi: 10.1016/j.compstruct.2016.10.132
    [4] VACULIK J, VISINTIN P, BURTON N G, et al. State-of-the-art review and future research directions for FRP-to-masonry bond research: Test methods and techniques for extraction of bond-slip behavior[J]. Construction and Building Materials,2018,183:325-345. doi: 10.1016/j.conbuildmat.2018.06.103
    [5] GHIASSI B, LOURENCO P B, OLIVEIRA D V. Accelerated hygrothermal aging of bond in FRP-masonry systems[J]. Journal of Composites for Construction,2015,19(3):04014051. doi: 10.1061/(ASCE)CC.1943-5614.0000506
    [6] GHIASSI B, LOURENCO P B, OLIVEIRA D V. Effect of environmental aging on the numerical response of FRP-strengthened masonry walls[J]. Journal of Structural Engineering,2016,142(1):04015087. doi: 10.1061/(ASCE)ST.1943-541X.0001358
    [7] SCIOLTI M S, AIELLO M A, FRIGIONE M. Influence of water on bond behavior between CFRP sheet and natural calcareous stones[J]. Composites Part B: Engineering,2012,43(8):3239-3250. doi: 10.1016/j.compositesb.2012.03.002
    [8] TEDESCHI C, KWIECIEN A, VALLUZZI M R, et al. Effect of thermal ageing and salt decay on bond between FRP and masonry[J]. Materials and Structures,2014,47(12):2051-2065. doi: 10.1617/s11527-014-0448-7
    [9] CARDANI G, VALLUZZI M R, PANIZZA M, et al. Influence of salt crystallization on composites-to-masonry bond evaluated on site by pull-off tests[J]. Key Engineering Materials,2014,624:338-345. doi: 10.4028/www.scientific.net/KEM.624.338
    [10] MALJAEE H, BAHMAN G, LOURENCO P B, et al. Moisture-induced degradation of interfacial bond in FRP-strengthened masonry[J]. Composites Part B: Engineering,2016,87:47-58. doi: 10.1016/j.compositesb.2015.10.022
    [11] 勒文强, 赵建昌, 王琦, 等. 冻融循环对CFRP-烧结粘土砖界面粘结性能影响[J]. 复合材料学报, 2020, 37(9):2294-2302.

    JIN Wenqiang, ZHAO Jianchang, WANG Qi, et al. Effects of freeze-thaw cycles on interfacial bonding property of CFRP-sintered clay brick[J]. Acta Materiae Compositae Sinica,2020,37(9):2294-2302(in Chinese).
    [12] 郭乐乐, 靳文强, 张家玮, 等. 冻融环境下CFRP-粘土砖抗剪性能试验研究[J]. 硅酸盐通报, 2020, 39(3):798-803, 818.

    GUO Lele, JIN Wenqiang, ZHANG Jiawei, et al. Experimental study on shear behavior of CFRP-clay brick in freeze-thaw environment[J]. Bulletin of the Chinese Ceramic Society,2020,39(3):798-803, 818(in Chinese).
    [13] 别治明. 冻融循环下青砖砌体结构性损伤的演化规律[J]. 山东农业大学学报(自然科学版), 2020, 51(4):668-672.

    BIE Zhiming. The evolution law of structural damage of blue brick masonry under a freeze-thaw cycle[J]. Journal of Shandong Agricultural University (Natural Science Edition),2020,51(4):668-672(in Chinese).
    [14] 李趁趁. FRP加固混凝土结构耐久性试验研究[D]. 大连: 大连理工大学, 2006.

    LI Chenchen. Experimental investigation on durability of FRP strengthened concrete structure[D]. Dalian: Dalian University of Technology, 2006(in Chinese).
    [15] 胡安妮. 荷载和恶劣环境下FRP增强结构耐久性研究[D]. 大连: 大连理工大学, 2007.

    HU Anni. Experimental study on durability of FRP strengthening civil engineering structures under load and aggres-sive environments[D]. Dalian: Dalian University of Technology, 2007(in Chinese).
    [16] QIAO P Z, XU Y W. Mode-I fracture and durability of FRP-concrete bonded interfaces[J]. Water Science and Engi-neering,2008,1(4):47-60.
    [17] YUN Y C, WU Y F. Durability of CFRP-concrete joints under freeze-thaw cycling[J]. Cold Regions Science and Technology,2011,65(3):401-412. doi: 10.1016/j.coldregions.2010.11.008
    [18] SHI J W, ZHU H, WU Z S, et al. Bond behavior between basalt fiber-reinforced polymer sheet and concrete substrate under the coupled effects of freeze-thaw cycling and sustained load[J]. Composite Construct,2013,17(4):530-542. doi: 10.1061/(ASCE)CC.1943-5614.0000349
    [19] 王苏岩, 姚因杰, 洪雷. 恶劣环境与荷载共同作用下FRP-高强混凝土的粘结耐久性[J]. 防灾减灾工程学报, 2017, 37(1):127-133.

    WANG Suyan, YAO Yinjie, HONG Lei. Durability of FRP-high strength concrete adhesive joints under aggressive exposure conditions and loads[J]. Journal of Disaster Prevention and Mitigation Engineering,2017,37(1):127-133(in Chinese).
    [20] 中国国家标准化管理委员会. 纤维增强塑料性能试验方法总则: GB/T 1446—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Fiber-reinforced plastics composites-The generals for determination of properties: GB/T 1446—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [21] 中国国家标准化管理委员会. 纤维增强塑料拉伸性能试验方法: GB/T 1447—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Fiber-reinforced plastics composites-Determination of tensile properties: GB/T 1447—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [22] 中国国家标准化管理委员会. 砌墙砖试验方法: GB/T 2542—2012[S]. 北京: 中国标准出版社, 2013.

    Standardization Administration of the People’s Republic of China. Test methods for wall bricks: GB/T 2542—2012[S]. Beijing: China Standards Press, 2013(in Chinese).
    [23] 中华人民共和国住房和城乡建设部. 建筑砂浆基本性能试验方法标准: JGJ/T 70—2009[S]. 北京: 中国建筑工业出版社, 2009.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test method of basic properties of construction mortar: JGJ/T 70—2009[S]. Beijing: China Architecture & Building Press, 2009(in Chinese).
    [24] 任慧韬, 姚谦峰, 胡安妮. 纤维增强复合材料的耐久性能试验研究[J]. 建筑材料学报, 2005, 8(5):520-526. doi: 10.3969/j.issn.1007-9629.2005.05.009

    REN Huitao, YAO Qianfeng, HU Anni. Experimental study on durability of fiber reinforced polymer[J]. Journal of Building Materials,2005,8(5):520-526(in Chinese). doi: 10.3969/j.issn.1007-9629.2005.05.009
    [25] PHANI K K, BOSE N R. Hygrothermal ageing of CSM-laminate during water immersion-An acoustic-ultrasonic study[J]. Journal Material Science,1986,21(10):3633-3637. doi: 10.1007/BF02403012
  • 加载中
图(21) / 表(2)
计量
  • 文章访问数:  832
  • HTML全文浏览量:  386
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-15
  • 修回日期:  2021-12-31
  • 录用日期:  2022-01-01
  • 网络出版日期:  2022-01-11
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回