留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光-磨削复合加工2.5维C/SiC复合材料凹槽的实验研究

王健 陈冰 徐虎 焦浩文 苏飞

王健, 陈冰, 徐虎, 等. 激光-磨削复合加工2.5维C/SiC复合材料凹槽的实验研究[J]. 复合材料学报, 2022, 40(0): 1-14
引用本文: 王健, 陈冰, 徐虎, 等. 激光-磨削复合加工2.5维C/SiC复合材料凹槽的实验研究[J]. 复合材料学报, 2022, 40(0): 1-14
Jian WANG, Bing CHEN, Hu XU, Haowen JIAO, Fei SU. Experimental research on Laser-Grinding compound processing of 2.5 dimensional C/SiC composite grooves[J]. Acta Materiae Compositae Sinica.
Citation: Jian WANG, Bing CHEN, Hu XU, Haowen JIAO, Fei SU. Experimental research on Laser-Grinding compound processing of 2.5 dimensional C/SiC composite grooves[J]. Acta Materiae Compositae Sinica.

激光-磨削复合加工2.5维C/SiC复合材料凹槽的实验研究

基金项目: 国家自然科学基金面上项目(No.52175401);湖南省研究生科研创新项目(QL20210239)
详细信息
    通讯作者:

    陈冰,博士,副教授,硕士生导师,研究方向为难加工材料的精密加工及其加工过程的在线监测技术研究 E-mail: chenbing@ hnust.edu.cn

  • 中图分类号: TB332

Experimental research on Laser-Grinding compound processing of 2.5 dimensional C/SiC composite grooves

  • 摘要: 针对2.5维C/SiC复合材料凹槽在激光加工后存在一定的烧蚀氧化层、侧壁倾斜、底面不平坦和磨削加工后易出现破碎、纤维断裂、刀具磨损、形状精度低、效率低等问题,提出激光-磨削复合加工的方法。为探索激光-磨削复合加工2.5维C/SiC复合材料凹槽的可行性,进行了激光加工、磨削加工和激光-磨削复合加工凹槽的对比实验。研究表明,激光加工后的凹槽侧壁倾斜约23°,底面和侧壁表面质量均较差,但加工效率高;磨削加工后的凹槽表面质量得到一定提升,但是由于砂轮磨损剧烈,使得磨削后的凹槽形状精度极差,且加工效率较低;而激光-磨削复合加工后的凹槽侧壁倾斜度被去除,砂轮磨损大幅降低,表面质量显著提升,凹槽表面粗糙度比磨削后的表面粗糙度提高了1.27~1.96倍,加工时间约为磨削加工的0.3。因此,激光-磨削复合加工不仅能克服激光加工和磨削加工的缺点,还能发挥激光加工效率高和磨削加工精度高的特点,同时兼顾了2.5维C/SiC复合材料凹槽加工的质量和效率。该研究结果可为2.5维C/SiC复合材料凹槽的高效、精密、低损伤加工提供理论支持。

     

  • 图  1  2.5维C/SiC复合材料排布方式及其微观形貌[21]

    Figure  1.  Structural model and microstructure of 2.5-dimensional C/SiC composite[21]

    图  2  C/SiC复合材料的加工过程图

    Figure  2.  Processing diagram of C/SiC composite

    图  3  C/SiC复合材料的实验加工系统

    Figure  3.  Experimental processing system of C/SiC composite

    图  4  2.5维C/SiC复合材料不同加工方式后的凹槽截面SEM图

    Figure  4.  SEM of groove of 2.5-dimensional C/SiC composite cross-section after different machining methods

    图  5  2.5维C/SiC复合材料不同加工方式后的凹槽底面形貌图

    Figure  5.  The bottom surface map of groove of 2.5-dimensional C/SiC composite after different processing methods

    图  6  C/SiC复合材料不同加工方式后横向纤维区域磨削加工微观形貌图

    Figure  6.  Microtopography of transverse fiber area of C/SiC composite was grinded after different processing methods

    图  7  C/SiC复合材料不同加工方式后纵向纤维区域磨削加工微观形貌图

    Figure  7.  Microtopography of longitudinal fiber area of C/SiC composite was grinded after different processing methods

    图  8  C/SiC复合材料不同加工方式后针刺纤维区域磨削加工微观形貌图

    Figure  8.  Microtopography of needle punched fiber area of C/SiC composite was grinded after different processing methods

    图  9  C/SiC复合材料不同加工方式后的侧壁形貌图

    Figure  9.  Sidewall topography of C/SiC composite after different processing methods

    图  10  C/SiC复合材料加工表面EDS成分检测图

    Figure  10.  EDS component detection diagram of C/SiC composite processed surface

    图  11  C/SiC复合材料加工后的砂轮表面形貌图

    Figure  11.  Surface topography of C/SiC composite grinding wheel after machining

    表  1  C/SiC复合材料的参数

    Table  1.   Mechanical properties of C/SiC composites

    ParameterValue
    Density/(g·cm−3)1.85-1.95
    Porosity/%<10
    Tensile strength/MPa75-100
    Bending strength/MPa240-300
    Compressive strength/MPa420-500
    Shear strength/MPa15-25
    Rockwell hardness/HRC85-90
    Thermal diffusivity/(cm2·s−1)0.03-0.06
    Thermal conductivity/(W·(m·K)−1)8-10
    下载: 导出CSV

    表  2  纳秒激光加工的特征参数

    Table  2.   Properties of nanosecond laser processing

    ParameterPulse-width /nsRepetition rate /kHzPower /WFocal displacement /μmScanning speed v1 /(mm·s−1)
    Value2020090100300
    下载: 导出CSV

    表  3  C/SiC复合材料不同加工方式下所用的加工时间以及加工后的表面粗糙度

    Table  3.   The processing time used in different processing methods and the surface roughness after processing C/SiC composite

    Processing methodsNanosecond laserGrindingLaser-grinding compound
    processing
    Processing time/s8080002420
    Roughness of bottom surface Ra/μm/3.431.16
    Sidewall surface roughness/μm/3.481.53
    下载: 导出CSV
  • [1] YANG Y, XU F, GAO X Y, et al. Impact resistance of 2D plain-woven C/SiC composites at high temperature[J]. Materials & Design,2016,90:635-641.
    [2] KUMAR S, CHANDRA R, KUMAR A, et al. C/SiC composites for propulsion application[J]. Composites and nanostructures,2015,7(4):225-230.
    [3] 苏纯兰, 周长灵, 徐鸿照等. 碳纤维增韧陶瓷基复合材料的研究进展[J]. 佛山陶瓷, 2020, 30(2):10-21.

    SU Chunlan, ZHOU Changling, XU Hongzhao, et al. Progress in carbon fiber reinforced ceramic matrix composites[J]. Foshan Ceramics,2020,30(2):10-21(in Chinese).
    [4] 张立峰. 陶瓷基复合材料界面强度与磨削过程材料去除机理研究[D]. 天津: 天津大学, 2015

    ZHANG Lifeng. Research on the interfacial strength and grinding mechanism of material removal for ceramic matrix composites[D]. Tianjin: Tianjin University, 2015(in Chinese).
    [5] 王平, 张权明, 李良. Cf/SiC陶瓷基复合材料车削加工工艺研究[J]. 火箭推进, 2011, 37(2):67-70.

    WANG Ping, ZHANG Quanming, LI Liang. Research on turning technology of Cf/SiC ceramic matrix composites[J]. Journal of Rocket Propulsion,2011,37(2):67-70(in Chinese).
    [6] DIAZ O G, LUNA G G, LIAO Z R, et al. The new challenges of machining ceramic matrix composites (CMCs): Review of surface integrity[J]. International Journal of Machine Tools and Manufacture,2019,139:24-36. doi: 10.1016/j.ijmachtools.2019.01.003
    [7] XING Y Q, DENG J X, ZHANG G D, et al. Assessment in drilling of C/C-SiC composites using brazed diamond drills[J]. Journal of Manufacturing Processes,2017,26:31-43. doi: 10.1016/j.jmapro.2017.01.006
    [8] DU J G, MING W Y, MA J, et al. New observations of the fiber orientations effect on machinability in grinding of C/SiC ceramic matrix composite[J]. Ceramics International,2018,44(12):13916-13928. doi: 10.1016/j.ceramint.2018.04.240
    [9] YUAN S M, LI Z, ZHANG C, et al. Research into the transition of material removal mechanism for C/SiC in rotary ultrasonic face machining[J]. The International Journal of Advanced Manufacturing Technology,2018,95(5):1751-1761.
    [10] WEI C J, ZHAO L, HU D J, et al. Electrical discharge machining of ceramic matrix composites with ceramic fiber reinforcements[J]. The International Journal of Advanced Manufacturing Technology,2013,64(1):187-194.
    [11] HASHISH M, KOTCHON A, RAMULU M. Status of AWJ machining of CMCS and hard materials[C]. //INTERTECH 2015-An Int Tech Conf Diamond, Cubic Boron Nitride their Appl. 2015.
    [12] TUERSLEY I P, HOULT T P, PASHBY I R. The processing of SiC/SiC ceramic matrix composites using a pulsed Nd-YAG laser: Part II the effect of process variables[J]. Journal of materials science,1998,33(4):963-967. doi: 10.1023/A:1004307710899
    [13] 毕铭智. C/SiC复合材料钻、铣加工技术的试验研究[D]. 大连: 大连理工大学, 2013.

    BI Mingzhi. Experimental research on drilling and milling of C/SiC composites [D]. Dalian: Dalian University of Technology, 2013(in Chinese).
    [14] 刘琼, 黄国钦. 2D C/C-SiC复合材料钻削加工试验研究[J]. 福建工程学院学报, 2019, 17(1):7-16.

    LIU Qiong, HUANG Guoqin. Experimental study on drilling processing of 2D C/C-SiC composites[J]. Journal of Fujian University of Technology,2019,17(1):7-16(in Chinese).
    [15] ZHANG L F, REN C Z, JI C H, et al. Effect of fiber orientations on surface grinding process of unidirectional C/SiC composites[J]. Applied Surface Science,2016,366:424-431. doi: 10.1016/j.apsusc.2016.01.142
    [16] DING K, FU Y C, SU H S, et al. Study on surface/subsurface breakage in ultrasonic assisted grinding of C/SiC composites[J]. The International Journal of Advanced Manufacturing Technology,2017,91(9):3095-3105.
    [17] FENG P F, WANG J J, ZHANG J F, et al. Drilling induced tearing defects in rotary ultrasonic machining of C/SiC composites[J]. Ceramics International,2017,43(1):791-799. doi: 10.1016/j.ceramint.2016.10.010
    [18] RAMULU M, JENKINS M G, GUO Z. Abrasive water jet machining mechanisms in continuous fiber ceramic composites[J]. Journal of Composites, Technology and Research,2001,23(2):82-91. doi: 10.1520/CTR10916J
    [19] HU W Q, SHIN Y C, KING G B. Micromachining of metals, alloys, and ceramics by picosecond laser ablation[J]. Journal of Manufacturing Science and Engineering,2010,132(1):165-174.
    [20] ZHAI Z Y, WANG W J, ZHAO J, et al. Influence of surface morphology on processing of C/SiC composites via femtosecond laser[J]. Composites Part A:Applied Science and Manufacturing,2017,102:117-125. doi: 10.1016/j.compositesa.2017.07.031
    [21] 焦浩文, 陈冰, 罗良等. 纳秒激光加工2.5维Cf/SiC复合材料的烧蚀孔洞特征[J]. 中国机械工程, 2020, 31(8):983-990. doi: 10.3969/j.issn.1004-132X.2020.08.014

    JIAO Haowen, CHEN Bing, LUO Liang, et al. Ablation hole characteristic of 2.5-dimensional Cf/SiC composites processed by nanosecond laser[J]. China Mechanical Engineering,2020,31(8):983-990(in Chinese). doi: 10.3969/j.issn.1004-132X.2020.08.014
    [22] JIAO H W, CHEN B, DENG Z H. Influence of laser parameters on processing micro-grooves of 2.5 dimensional C/SiC composites via nanoseco d laser[J]. The International Journal of Advanced Manufacturing Technology,2021:1-17.
    [23] 焦浩文. 2.5维C/SiC复合材料的纳秒激光加工机理研究[D]. 湘潭: 湖南科技大学, 2021.

    JIAO Haowen. Research on nanosecond laser processing mechanism of 2.5dimensional C/SiC composites [D]. Xiangtan: Hunan University of Science Technology, 2021(in Chinese).
    [24] ZHAI Z, WEI C, ZHANG Y, et al. Investigations on the oxidation phenomenon of SiC/SiC fabricated by high repetition frequency femtosecond laser[J]. Applied Surface Science,2020,502:144131. doi: 10.1016/j.apsusc.2019.144131
    [25] 徐洲. 圆弧形树脂金刚石砂轮激光修整实验研究[D]. 湘潭: 湖南科技大学, 2020.

    XU Zhou. Experimental research on laser dressing of arc-shaped resin-bonded diamond grinding wheels[D]. Xiangtan: Hunan University of Science Technology, 2020(in Chinese).
    [26] YILBAS B, BHUSHAN B. Laser treatment of sintered silicon carbide surface for enhanced hydrophobicity[J]. The Journal of the Minerals, Metals & Materials Society,2014,66(1):87-94.
  • 加载中
计量
  • 文章访问数:  113
  • HTML全文浏览量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-19
  • 录用日期:  2022-01-26
  • 修回日期:  2022-01-10
  • 网络出版日期:  2022-03-05

目录

    /

    返回文章
    返回