留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光-磨削复合加工2.5维C/SiC复合材料凹槽

王健 陈冰 徐虎 焦浩文 苏飞

王健, 陈冰, 徐虎, 等. 激光-磨削复合加工2.5维C/SiC复合材料凹槽[J]. 复合材料学报, 2022, 39(12): 6028-6041. doi: 10.13801/j.cnki.fhclxb.20220223.003
引用本文: 王健, 陈冰, 徐虎, 等. 激光-磨削复合加工2.5维C/SiC复合材料凹槽[J]. 复合材料学报, 2022, 39(12): 6028-6041. doi: 10.13801/j.cnki.fhclxb.20220223.003
WANG Jian, CHEN Bing, XU Hu, et al. Laser-grinding compound processing of 2.5 dimensional C/SiC composite grooves[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6028-6041. doi: 10.13801/j.cnki.fhclxb.20220223.003
Citation: WANG Jian, CHEN Bing, XU Hu, et al. Laser-grinding compound processing of 2.5 dimensional C/SiC composite grooves[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6028-6041. doi: 10.13801/j.cnki.fhclxb.20220223.003

激光-磨削复合加工2.5维C/SiC复合材料凹槽

doi: 10.13801/j.cnki.fhclxb.20220223.003
基金项目: 国家自然科学基金面上项目(52175401);湖南省研究生科研创新项目(QL20210239)
详细信息
    通讯作者:

    陈冰,博士,副教授,硕士生导师,研究方向为难加工材料的精密加工及其加工过程的在线监测技术 E-mail: chenbing@hnust.edu.cn

  • 中图分类号: TB332

Laser-grinding compound processing of 2.5 dimensional C/SiC composite grooves

  • 摘要: 针对2.5维碳纤维增强碳化硅陶瓷基(C/SiC)复合材料凹槽在激光加工后存在一定的烧蚀氧化层、侧壁倾斜、底面不平坦和磨削加工后易出现破碎、纤维断裂、刀具磨损、形状精度低、效率低等问题,提出激光-磨削复合加工的方法。为探索激光-磨削复合加工2.5维C/SiC复合材料凹槽的可行性,进行了激光加工、磨削加工和激光-磨削复合加工凹槽的对比实验。研究表明:激光加工后的凹槽侧壁倾斜约23°,底面和侧壁表面质量均较差,但加工效率高;磨削加工后的凹槽表面质量得到一定提升,但是由于砂轮磨损剧烈,使磨削后的凹槽形状精度极差,且加工效率较低;而激光-磨削复合加工后的凹槽侧壁倾斜度被去除,砂轮磨损大幅降低,表面质量显著提升,凹槽表面粗糙度比磨削后的表面粗糙度提高了1.27~1.96倍,加工时间约为磨削加工的0.3倍。因此,激光-磨削复合加工不仅能克服激光加工和磨削加工的缺点,还能发挥激光加工效率高和磨削加工精度高的特点,同时兼顾了2.5维C/SiC复合材料凹槽加工的质量和效率。该研究结果可为2.5维C/SiC复合材料凹槽的高效、精密、低损伤加工提供理论支持。

     

  • 图  1  2.5维C/SiC复合材料排布方式及其微观形貌[21]

    Figure  1.  Structural model and microstructures of 2.5-dimensional C/SiC composite[21]

    图  2  C/SiC复合材料的加工过程图

    Figure  2.  Processing diagram of C/SiC composite

    C1, C2—Maximum rectangular trajectory perimeter during laser scanning, minimum rectangular trajectory perimeter during laser scanning; v1, v2—Nanosecond laser scanning speed, grinding wheel feed speed; B—Width of the groove; L—Length of the groove; n—Grinding wheel speed; H—Depth of the groove; L—Length of the groove

    图  3  C/SiC复合材料的实验加工系统

    Figure  3.  Experimental processing system of C/SiC composite

    图  4  2.5维C/SiC复合材料不同加工方式后的凹槽截面SEM图像

    Figure  4.  SEM images of groove of 2.5-dimensional C/SiC composite cross-section after different machining methods

    图  5  2.5维C/SiC复合材料不同加工方式后的凹槽底面形貌图

    Figure  5.  Bottom surface maps of groove of 2.5-dimensional C/SiC composite after different processing methods

    图  6  C/SiC复合材料不同加工方式后横向纤维区域磨削加工微观形貌图

    Figure  6.  Microtopographies of transverse fiber area of C/SiC composite grinded after different processing methods

    图  7  C/SiC复合材料不同加工方式后纵向纤维区域磨削加工微观形貌图

    Figure  7.  Microtopographies of longitudinal fiber area of C/SiC composite grinded after different processing methods

    图  8  C/SiC复合材料不同加工方式后针刺纤维区域磨削加工微观形貌图

    Figure  8.  Microtopographies of needle punched fiber area of C/SiC composite grinded after different processing methods

    图  9  C/SiC复合材料不同加工方式后的侧壁形貌图

    Figure  9.  Sidewall topographies of C/SiC composite after different processing methods

    图  10  C/SiC复合材料加工表面EDS成分检测图

    Figure  10.  EDS component detection diagram of C/SiC composite processed surface

    图  11  C/SiC复合材料加工后的砂轮表面形貌图

    Figure  11.  Surface topography of C/SiC composite grinding wheel after machining

    表  1  碳纤维增强碳化硅陶瓷基(C/SiC)复合材料的参数

    Table  1.   Mechanical properties of carbon fiber reinforced SiC ceramic matrix (C/SiC) composites

    ParameterValue
    Density/(g·cm−3)1.85-1.95
    Porosity/%<10
    Tensile strength/MPa75-100
    Bending strength/MPa240-300
    Compressive strength/MPa420-500
    Shear strength/MPa15-25
    Rockwell hardness/HRC85-90
    Thermal diffusivity/(cm2·s−1)0.03-0.06
    Thermal conductivity/(W·(m·K)−1)8-10
    下载: 导出CSV

    表  2  纳秒激光加工的特征参数

    Table  2.   Properties of nanosecond laser processing

    ParameterPulse-width/nsRepetition rate/kHzPower/WFocal displacement/μmScanning speed v1/(mm·s−1)
    Value2020090100300
    下载: 导出CSV

    表  3  C/SiC复合材料不同加工方式下所用的加工时间及加工后的表面粗糙度

    Table  3.   Processing time used in different processing methods and the surface roughness after processing C/SiC composite

    Processing methodsNanosecond laserGrindingLaser-grinding compound
    processing
    Processing time/s8080002420
    Roughness of bottom surface Ra/μm3.431.16
    Sidewall surface roughness/μm3.481.53
    下载: 导出CSV
  • [1] YANG Y, XU F, GAO X Y, et al. Impact resistance of 2D plain-woven C/SiC composites at high temperature[J]. Materials & Design,2016,90:635-641.
    [2] KUMAR S, CHANDRA R, KUMAR A, et al. C/SiC compo-sites for propulsion application[J]. Composites and Nanostructures,2015,7(4):225-230.
    [3] 苏纯兰, 周长灵, 徐鸿照, 等. 碳纤维增韧陶瓷基复合材料的研究进展[J]. 佛山陶瓷, 2020, 30(2):10-21.

    SU Chunlan, ZHOU Changling, XU Hongzhao, et al. Progress in carbon fiber reinforced ceramic matrix compo-sites[J]. Foshan Ceramics,2020,30(2):10-21(in Chinese).
    [4] 张立峰. 陶瓷基复合材料界面强度与磨削过程材料去除机理研究[D]. 天津: 天津大学, 2015.

    ZHANG Lifeng. Research on the interfacial strength and grinding mechanism of material removal for ceramic matrix composites[D]. Tianjin: Tianjin University, 2015(in Chinese).
    [5] 王平, 张权明, 李良. Cf/SiC陶瓷基复合材料车削加工工艺研究[J]. 火箭推进, 2011, 37(2):67-70.

    WANG Ping, ZHANG Quanming, LI Liang. Research on turning technology of Cf/SiC ceramic matrix composites[J]. Journal of Rocket Propulsion,2011,37(2):67-70(in Chinese).
    [6] DIAZ O G, LUNA G G, LIAO Z R, et al. The new challenges of machining ceramic matrix composites (CMCs): Review of surface integrity[J]. International Journal of Machine Tools and Manufacture,2019,139:24-36. doi: 10.1016/j.ijmachtools.2019.01.003
    [7] XING Y Q, DENG J X, ZHANG G D, et al. Assessment in drilling of C/C-SiC composites using brazed diamond drills[J]. Journal of Manufacturing Processes,2017,26:31-43. doi: 10.1016/j.jmapro.2017.01.006
    [8] DU J G, MING W Y, MA J, et al. New observations of the fiber orientations effect on machinability in grinding of C/SiC ceramic matrix composite[J]. Ceramics International,2018,44(12):13916-13928. doi: 10.1016/j.ceramint.2018.04.240
    [9] YUAN S M, LI Z, ZHANG C, et al. Research into the transition of material removal mechanism for C/SiC in rotary ultrasonic face machining[J]. The International Journal of Advanced Manufacturing Technology,2018,95(5):1751-1761.
    [10] WEI C J, ZHAO L, HU D J, et al. Electrical discharge machining of ceramic matrix composites with ceramic fiber reinforcements[J]. The International Journal of Advanced Manufacturing Technology,2013,64(1):187-194.
    [11] HASHISH M, KOTCHON A, RAMULU M. Status of AWJ machining of CMCS and hard materials[C]//Proceedings of Intertech 2015. Indianapolis, 2015.
    [12] TUERSLEY I P, HOULT T P, PASHBY I R. The processing of SiC/SiC ceramic matrix composites using a pulsed Nd-YAG laser: Part II the effect of process variables[J]. Journal of Materials Science,1998,33(4):963-967. doi: 10.1023/A:1004307710899
    [13] 毕铭智. C/SiC复合材料钻、铣加工技术的试验研究[D]. 大连: 大连理工大学, 2013.

    BI Mingzhi. Experimental research on drilling and milling of C/SiC composites[D]. Dalian: Dalian University of Technology, 2013(in Chinese).
    [14] 刘琼, 黄国钦. 2D C/C-SiC复合材料钻削加工试验研究[J]. 福建工程学院学报, 2019, 17(1):7-16.

    LIU Qiong, HUANG Guoqin. Experimental study on drilling processing of 2D C/C-SiC composites[J]. Journal of Fujian University of Technology,2019,17(1):7-16(in Chinese).
    [15] ZHANG L F, REN C Z, JI C H, et al. Effect of fiber orientations on surface grinding process of unidirectional C/SiC composites[J]. Applied Surface Science,2016,366:424-431. doi: 10.1016/j.apsusc.2016.01.142
    [16] DING K, FU Y C, SU H S, et al. Study on surface/subsurface breakage in ultrasonic assisted grinding of C/SiC compo-sites[J]. The International Journal of Advanced Manufacturing Technology,2017,91(9):3095-3105.
    [17] FENG P F, WANG J J, ZHANG J F, et al. Drilling induced tearing defects in rotary ultrasonic machining of C/SiC composites[J]. Ceramics International,2017,43(1):791-799. doi: 10.1016/j.ceramint.2016.10.010
    [18] RAMULU M, JENKINS M G, GUO Z. Abrasive water jet machining mechanisms in continuous fiber ceramic compo-sites[J]. Journal of Composites, Technology and Research,2001,23(2):82-91. doi: 10.1520/CTR10916J
    [19] HU W Q, SHIN Y C, KING G B. Micromachining of metals, alloys, and ceramics by picosecond laser ablation[J]. Journal of Manufacturing Science and Engineering,2010,132(1):165-174.
    [20] ZHAI Z Y, WANG W J, ZHAO J, et al. Influence of surface morphology on processing of C/SiC composites via femtosecond laser[J]. Composites Part A: Applied Science and Manufacturing,2017,102:117-125. doi: 10.1016/j.compositesa.2017.07.031
    [21] 焦浩文, 陈冰, 罗良, 等. 纳秒激光加工2.5维Cf/SiC复合材料的烧蚀孔洞特征[J]. 中国机械工程, 2020, 31(8):983-990. doi: 10.3969/j.issn.1004-132X.2020.08.014

    JIAO Haowen, CHEN Bing, LUO Liang, et al. Ablation hole characteristic of 2.5-dimensional Cf/SiC composites processed by nanosecond laser[J]. China Mechanical Engi-neering,2020,31(8):983-990(in Chinese). doi: 10.3969/j.issn.1004-132X.2020.08.014
    [22] JIAO H W, CHEN B, DENG Z H. Influence of laser parameters on processing micro-grooves of 2.5 dimensional C/SiC composites via nanosecond laser[J]. The International Journal of Advanced Manufacturing Technology,2021,118:85-101.
    [23] 焦浩文. 2.5维C/SiC复合材料的纳秒激光加工机理研究[D]. 湘潭: 湖南科技大学, 2021.

    JIAO Haowen. Research on nanosecond laser processing mechanism of 2.5 dimensional C/SiC composites[D]. Xiangtan: Hunan University of Science Technology, 2021(in Chinese).
    [24] ZHAI Z, WEI C, ZHANG Y, et al. Investigations on the oxidation phenomenon of SiC/SiC fabricated by high repetition frequency femtosecond laser[J]. Applied Surface Science,2020,502:144131. doi: 10.1016/j.apsusc.2019.144131
    [25] 徐洲. 圆弧形树脂金刚石砂轮激光修整实验研究[D]. 湘潭: 湖南科技大学, 2020.

    XU Zhou. Experimental research on laser dressing of arc-shaped resin-bonded diamond grinding wheels[D]. Xiangtan: Hunan University of Science Technology, 2020(in Chinese).
    [26] YILBAS B, BHUSHAN B. Laser treatment of sintered silicon carbide surface for enhanced hydrophobicity[J]. The Journal of the Minerals, Metals & Materials Society,2014,66(1):87-94.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  840
  • HTML全文浏览量:  372
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-19
  • 修回日期:  2022-01-10
  • 录用日期:  2022-01-26
  • 网络出版日期:  2022-02-25
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回