留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

疏水改性玄武岩纤维增强树脂复合材料筋的力学性能及耐久性

周傲 李烁 刘铁军 邹笃建 杨光

周傲, 李烁, 刘铁军, 等. 疏水改性玄武岩纤维增强树脂复合材料筋的力学性能及耐久性[J]. 复合材料学报, 2022, 39(11): 5228-5238. doi: 10.13801/j.cnki.fhclxb.20220419.003
引用本文: 周傲, 李烁, 刘铁军, 等. 疏水改性玄武岩纤维增强树脂复合材料筋的力学性能及耐久性[J]. 复合材料学报, 2022, 39(11): 5228-5238. doi: 10.13801/j.cnki.fhclxb.20220419.003
ZHOU Ao, LI Shuo, LIU Tiejun, et al. Mechanical properties and durability of hydrophobically modified basalt fiber reinforced polymer bars[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5228-5238. doi: 10.13801/j.cnki.fhclxb.20220419.003
Citation: ZHOU Ao, LI Shuo, LIU Tiejun, et al. Mechanical properties and durability of hydrophobically modified basalt fiber reinforced polymer bars[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5228-5238. doi: 10.13801/j.cnki.fhclxb.20220419.003

疏水改性玄武岩纤维增强树脂复合材料筋的力学性能及耐久性

doi: 10.13801/j.cnki.fhclxb.20220419.003
基金项目: 广东省重点领域研发计划项目(2019 B111107001);国家自然科学基金(51908167)
详细信息
    通讯作者:

    刘铁军,博士,教授,博士生导师,研究方向为土木工程高性能材料、海洋工程材料与耐久性 E-mail: liutiejun@hit.edu.cn

  • 中图分类号: TB332;TU599

Mechanical properties and durability of hydrophobically modified basalt fiber reinforced polymer bars

  • 摘要: 玄武岩纤维增强树脂复合材料(Basalt fiber reinforced polymer,BFRP)筋因其绿色环保、耐腐蚀性强等特点,广泛应用于海洋工程。但在长期服役过程中BFRP筋会出现吸水和被碱腐蚀导致的溶胀裂解等现象,树脂基体发生膨胀破坏,导致玄武岩纤维和基体脱粘。基体膨胀后海水中侵蚀离子加速入侵,进一步加剧BFRP筋性能退化。为了阻碍水分入侵,延长BFRP筋在海洋工程中的服役年限,通过制备氟化纳米 SiO2 改性自固化环氧树脂疏水涂层,并将其喷涂于筋表面对BFRP筋进行改性。疏水涂层使BFRP筋表面接触角从63°提高到106°。之后将BFRP筋放入25℃、45℃、60℃水和海水中进行耐久性实验,探究改性前后BFRP筋吸水率、拉伸性能在长期浸泡龄期下的变化规律。试验结果表明,疏水改性后的BFRP筋吸水率降低,其中45℃水环境中浸泡60天后,疏水改性BFRP筋吸水率比未改性筋降低40%。采用阿伦尼乌斯模型对改性前后BFRP筋的拉伸强度进行长期性能预测,疏水改性BFRP筋在长期服役过程中有更高拉伸强度保留率。通过制备氟化纳米 SiO2 改性自固化环氧树脂的疏水改性方法能够降低BFRP筋吸水率,提高强度保留率,延长服役寿命。

     

  • 图  1  玄武岩纤维增强树脂复合材料(BFRP)筋表面疏水涂层制备流程

    Figure  1.  Preparation process of hydrophobic coating on basalt fiber reinforced polymer (BFRP) bars surface

    图  2  BFRP筋改性前后表面形貌对比

    Figure  2.  Comparison of surface for BFRP bars before and after modification

    图  3  改性前后BFRP筋表面EDS图谱

    Figure  3.  EDS spectra of surface for BFRP bars before and after modification

    图  4  改性前后BFRP筋的表面接触角θ

    Figure  4.  Contact angles θ of surface for BFRP bars before and after modification

    图  5  BFRP筋吸水率变化

    Figure  5.  Variations of water absorption for BFRP bars

    图  6  BFRP筋拉伸强度变化

    Figure  6.  Variations of tensile strength of BFRP bars

    图  7  25oC海水环境中浸泡60天BFRP筋的SEM图像

    Figure  7.  SEM images of BFRP bars immersed in 25oC seawater for 60 days

    图  8  45℃海水环境中浸泡60天BFRP筋的SEM图像

    Figure  8.  SEM images of BFRP bars immersed in 45℃ seawater for 60 days

    图  9  60℃海水环境中浸泡60天BFRP筋的SEM图像

    Figure  9.  SEM images of BFRP bars immersed in 60℃ seawater for 60 days

    图  10  海水环境下BFRP筋的Arrhenius曲线

    Figure  10.  Arrhenius curves of BFRP bars in seawater environment

    T—Temperature; Re—Retention

    图  11  改性前后BFRP筋在25℃下长期性能退化预测曲线

    Figure  11.  Long-term performance prediction curves of BFRP bars before and after modification at 25℃

    表  1  人工海水配比

    Table  1.   Proportion of artificial seawater

    H2O/LNaCl/
    (g∙L−1)
    MgCl2/
    (g∙L−1)
    Na2SO4/
    (g∙L−1)
    CaCl2/
    (g∙L−1)
    KCl/
    (g∙L−1)
    1.0024.535.204.091.160.70
    下载: 导出CSV

    表  2  BFRP筋时间转换因子αTSF

    Table  2.   Values of time-shift factor αTSF for BFRP bars

    Temperature/℃αTSF
    Unmodified BFRPModified BFRP
    251.001.00
    453.813.83
    609.369.45
    下载: 导出CSV
  • [1] ZHOU A, QIN R, CHOW C L, et al. Structural performance of FRP confined seawater concrete columns under chloride environment[J]. Composite Structures,2019,216:12-19. doi: 10.1016/j.compstruct.2019.02.058
    [2] 王晴晴. 玄武岩纤维增强乙烯基树脂复合材料的制备及性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.

    WANG Qingqing. Study on preparation and performance of basalt fiber reinforced vinyl resin composite[D]. Harbin: Harbin Engineering University, 2015(in Chinese).
    [3] DHAND V, MITTAL G, RHEE K Y, et al. A short review on basalt fiber reinforced polymer composites[J]. Compo-sites Part B: Engineering,2015,73:166-180.
    [4] 霍宝荣, 张向东. BFRP 筋的力学性能试验[J]. 沈阳建筑大学学报: 自然科学版, 2011, 27(4):626-630.

    HUO Baorong, ZHANG Xiangdong. Mechanical perfor-mance test of BFRP bar[J]. Journal of Shenyang Jianzhu University: Natural Science Edition,2011,27(4):626-630(in Chinese).
    [5] 董志强, 吴刚. FRP筋增强混凝土结构耐久性能研究进展[J]. 土木工程学报, 2019, 52(10):1-19.

    DONG Zhiqiang, WU Gang. Research progress on durabi-lity of FRP bars reinforced concrete structures[J]. China Civil Engineering Journal,2019,52(10):1-19(in Chinese).
    [6] 吴敬宇, 咸贵军, 李惠, 等. 玄武岩纤维及其复合筋的耐久性能研究[J]. 玻璃钢/复合材料, 2011, 5:72-75.

    WU Jingyu, XIAN Guijun, LI Hui, et al. Research on durabi-lity of basalt fiber and its composite reinforcement[J]. FRP/Composite Materials,2011,5:72-75(in Chinese).
    [7] 陆中宇, 李永超, 谢建和. 海水海砂混凝土内玄武岩纤维增强复材筋性能退化研究[J]. 工业建筑, 2019 , 49(9):18-21.

    LU Zhongyu, LI Yongchao, XIE Jianhe. Study on the degradation of BFRP bars wrapped in seawater sea sand concrete[J]. Industrial Building,2019 , 49(9):18-21(in Chinese).
    [8] ZARRELLI M, SKORDOS A A, PARTRIDGE I K. Toward a constitutive model for cure-dependent modulus of a high temperature epoxy during the cure[J]. European Polymer Journal,2010,46(8):1705-1712. doi: 10.1016/j.eurpolymj.2010.06.002
    [9] SHI J, WANG X, DING L, et al. Degradation of creep behaviors of basalt fiber-reinforced polymer tendons in salt solution[J]. Journal of Materials in Civil Engineering,2018,30(12):04018317. doi: 10.1061/(ASCE)MT.1943-5533.0002525
    [10] YI Y, ZHU D, GUO S, et al. Mitigating the deterioration of BFRP bars in seawater sea sand mortar by reducing alkalinity[J]. Construction and Building Materials,2022,317:125885. doi: 10.1016/j.conbuildmat.2021.125885
    [11] WU C, LI V C. CFRP-ECC hybrid for strengthening of the concrete structures[J]. Composite Structures,2017,178:372-382. doi: 10.1016/j.compstruct.2017.07.034
    [12] 许小芳, 申世杰, 刘亚兰, 等. 玄武岩纤维增强环氧树脂复合材料复合机制[J]. 复合材料学报, 2011, 28(4): 99-106.

    XU Xiaofang, SHEN Shijie, LIU Yalan, et al. Mechanism of basalt fiber reinforced epoxy[J]. Acta Materiae Compositae Sinica, 2011, 28(4): 99-106(in Chinese).
    [13] LI M, LIU H, GU Y, et al. Effects of carbon fiber surface characteristics on interfacial bonding of epoxy resin composite subjected to hygrothermal treatments[J]. Applied Surface Science,2014,288:666-672. doi: 10.1016/j.apsusc.2013.10.093
    [14] 吴刚, 董志强, 徐博. 海洋环境下BFRP筋与混凝土黏结性能及基本锚固长度计算方法研究[J]. 土木工程学报, 2016, 49(7):89-99.

    WU Gang, DONG Zhiqiang, XU Bo. Bond performance and calculation method for the basic anchorage length of BFRP bar with concrete in marine environment[J]. Journal of Civil Engineering,2016,49(7):89-99(in Chinese).
    [15] WANG B, LI D H, XIAN G J, et al. Effect of immersion in water or alkali solution on the structures and properties of epoxy resin[J]. Polymers,2021,13(12):1902. doi: 10.3390/polym13121902
    [16] WANG Z, ZHAO X L, XIAN G, et al. Effect of sustained load and seawater and sea sand concrete environment on durability of basalt and glass-fibre reinforced polymer (B/GFRP) bars[J]. Corrosion Science,2018,138:200-218. doi: 10.1016/j.corsci.2018.04.002
    [17] WEI B, CAO H, SONG S. Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater[J]. Corrosion Science,2011,53:426-431. doi: 10.1016/j.corsci.2010.09.053
    [18] 吴超, 吴瑞东, 蒋金桥, 等. 土木工程应用中碳纤维/环氧树脂界面在环境影响下退化的分子模拟研究进展[J]. 复合材料学报, 2020, 37(12):2941-2952.

    WU Chao, WU Ruidong, JIANG Jinqiao, et al. Recent advances in understanding environment effect on degradation of carbon fiber/epoxy matrix influence in civil engineering applications via molecular simulation[J]. Acta Materiae Compositae Sinica,2020,37(12):2941-2952(in Chinese).
    [19] REN T T, TANG G W, BIAO Y, et al. One-step fabrication of robust superhydrophobic coatings with corrosion resistance by a self-curing epoxy-resin-based adhesive[J]. Surface and Coatings Technology,2019,380:125086. doi: 10.1016/j.surfcoat.2019.125086
    [20] REN T, GENG Z, HE J, et al. A versatile route to polymer-reinforced, broadband antireflective and superhydrophobic thin films without high-temperature treatment[J]. Journal of Colloid & Interface Science,2017,486:1-7.
    [21] 中国国家标准化管理委员会. 纳米薄膜接触角测量方法: GB/T 30447—2013[S]. 北京: 中国标准出版社, 2013.

    Standardization Administration of the People’s Republic of China. Measurement method for contact angle of nano-film surface: GB/T 30447—2013[S]. Beijing: China Standards Press, 2013(in Chinese).
    [22] American Society for Testing and Materials. Standard practice for the preparation of substitute ocean water: ASTM-D-1141[S]. West Conshohocken: American Society for Testing and Materials International, 2013.
    [23] HORI H, YAMAMOTO A, HAYAKAWA E, et al. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant[J]. Environmental Science & Technology,2005,39:2383.
    [24] 郭丽, 袁颐进, 冯丽贞, 等. 电活化过硫酸盐降解全氟辛酸及其中间产物的探究分析[J]. 环境科学学报, 2020, 40(6):2045-2054.

    GUO Li, YUAN Yijin, FENG Lizhen, et al. Ellectrochemical activated persulfate to degrade perfluo-rooctanoic acid and the analysis of intermediate products[J]. Acta Scientiae Circumstantiae,2020,40(6):2045-2054(in Chinese).
    [25] 张春晖, 刘育, 唐佳伟, 等. 典型工业废水中全氟化合物处理技术研究进展[J]. 中国环境科学, 2021, 41(3):1109-1118. doi: 10.3969/j.issn.1000-6923.2021.03.013

    ZHANG Chunhui, LIU Yu, TANG Jiawei, et al. Progress of research on treatment technology of perfluorinated compounds in typical industrial wastewater[J]. China Environmental Science,2021,41(3):1109-1118(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.03.013
    [26] American Society for Testing and Materials. Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials: ASTM-D-5229[S]. West Conshohocken: American Society for Testing and Materials International, 2014.
    [27] American Certification Institute. Guide test methods for fiber-reinforced polymers (FRPs) for reinforcing or strengthening concrete structures: ACI440.3 R-04[S]. Farmington Hills: American Certification Institute Committee, 2004.
    [28] LEI L, WANG Q, XU S, et al. Fabrication of superhydrophobic concrete used in marine environment with anti-corrosion and stable mechanical properties[J]. Construction and Building Materials,2020,251:118946. doi: 10.1016/j.conbuildmat.2020.118946
    [29] XU S, WANG Q, WANG N, et al. Environmentally-friendly fabrication of a recyclable oil-water separation material using copper mesh for immiscible oil/water mixtures[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2019,583:124010. doi: 10.1016/j.colsurfa.2019.124010
    [30] 王晖, 顾帼华. 固体的表面能及其亲水/疏水性[J]. 化学通报, 2009, 72(12):1091-1096.

    WANG Hui, GU Guohua. Surface free energy of solids matter and its hydrophilicity/hydrophobicity nature[J]. Chemical Bulletin,2009,72(12):1091-1096(in Chinese).
    [31] 薛伟辰, 刘亚男, 付凯, 等. 碱和海水环境下GFRP 筋的抗拉性能加速老化试验研究[J]. 华北水利水电大学学报: 自然科学版, 2015, 36(1):38-42.

    XUE Weichen, LIU Yanan, FU Kai, et al. Experimental study on tensile properties and accelerated aging of GFRP reinforcement in alkali and seawater environment[J]. Journal of North China University of Water Resources and Hydropower: Natural Science Edition,2015,36(1):38-42(in Chinese).
    [32] PHANI K K, BOSE N R. Temperature dependence of hydrothermal ageing of CSM-laminate during water immersion[J]. Composites Science and Technology,1988,19(1):81.
    [33] CHEN Y, DAVALOS J F, RAY I. Durability prediction for GFRP reinforcing bars using short-term data of accelerated aging tests[J]. Journal of Composites for Construction,2006,10(4):279-286. doi: 10.1061/(ASCE)1090-0268(2006)10:4(279)
    [34] WANG Z, ZHAO X L, XIAN G, et al. Long-term durability of basalt- and glass-fibre reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment[J]. Construction and Building Materials,2017,139:467-489. doi: 10.1016/j.conbuildmat.2017.02.038
    [35] 中华人民共和国住房和城乡建设部. 纤维增强复合材料工程应用技术标准: GB/T 50608—2020[S]. 北京: 中国计划出版社, 2020.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Measurement method for contact angle of nano-film surface: GB/T 50608—2020[S]. Beijing: China Planning Press, 2013(in Chinese).
    [36] 何政, 李光. 基于可靠度的FRP筋材料分项系数的确定[J]. 工程力学, 2008, 25(9):214-223.

    HE Zheng, LI Guang. Reliability-based calibartion of material partial factor of fiber reinforced polymer (FRP) rod[J]. Engineering Mechanics,2008,25(9):214-223(in Chinese).
    [37] YAO L, SANJAYAN S, SONG J L, et al. Robust self-cleaning surfaces that function when exposed to either air or oil[J]. Science,2015,347(6226):1132-1135. doi: 10.1126/science.aaa0946
    [38] ZHONG Y J, GU L H, WANG S, et al. Green and superhydrophobic coatings based on tailor-modified lignocellulose nanofibrils for self-cleaning surfaces[J]. Industrial & Engineering Chemistry Research,2019,58(44):20323-20330.
    [39] WANG K K, WU P, HE J, et al. Evaluation of the engineering applications of superhydrophobic metal surfaces achieved by a spraying-adhering process using different combinations of hydrophobic particles and adhesives[J]. Industrial & Engineering Chemistry Research,2020,59(42):18873-18886.
    [40] WANG X, ZHANG M Q, KOU R, et al. Unique necklace-like phenol formaldehyde resin nanofibers: Scalable templating synthesis, casting films, and their superhydrophobic property[J]. Advanced Functional Materials,2016,26(28):5086-5092. doi: 10.1002/adfm.201600907
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  844
  • HTML全文浏览量:  371
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-11
  • 修回日期:  2022-04-08
  • 录用日期:  2022-04-08
  • 网络出版日期:  2022-04-20
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回