留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

疏水改性玄武岩纤维增强树脂复合材料筋的力学性能及耐久性

周傲 李烁 刘铁军 邹笃建 杨光

周傲, 李烁, 刘铁军, 等. 疏水改性玄武岩纤维增强树脂复合材料筋的力学性能及耐久性[J]. 复合材料学报, 2022, 40(0): 1-11
引用本文: 周傲, 李烁, 刘铁军, 等. 疏水改性玄武岩纤维增强树脂复合材料筋的力学性能及耐久性[J]. 复合材料学报, 2022, 40(0): 1-11
Ao ZHOU, Shuo LI, Tiejun LIU, Dujian ZOU, Guang YANG. Mechanical properties and durability of hydrophobically modified basalt fiber reinforced polymer bars[J]. Acta Materiae Compositae Sinica.
Citation: Ao ZHOU, Shuo LI, Tiejun LIU, Dujian ZOU, Guang YANG. Mechanical properties and durability of hydrophobically modified basalt fiber reinforced polymer bars[J]. Acta Materiae Compositae Sinica.

疏水改性玄武岩纤维增强树脂复合材料筋的力学性能及耐久性

基金项目: 广东省重点领域研发计划项目(2019 B111107001);国家自然科学基金 (51908167)
详细信息
    通讯作者:

    刘铁军,博士,教授,博士生导师,研究方向为土木工程高性能材料、海洋工程材料与耐久性 E-mail: liutiejun@hit.edu.cn

  • 中图分类号: TB332;TU599

Mechanical properties and durability of hydrophobically modified basalt fiber reinforced polymer bars

  • 摘要: 玄武岩纤维增强树脂复合材料(Basalt fiber reinforced polymer, BFRP)筋因其绿色环保、耐腐蚀性强等特点,广泛应用于海洋工程。但在长期服役过程中BFRP筋会出现吸水和被碱腐蚀导致的溶胀裂解等现象,树脂基体发生膨胀破坏,导致玄武岩纤维和基体脱粘。基体膨胀后海水中侵蚀离子加速入侵,进一步加剧BFRP筋性能退化。为了阻碍水分入侵,延长BFRP筋在海洋工程中的服役年限,通过制备氟化纳米二氧化硅改性自固化环氧树脂疏水涂层,并将其喷涂于筋表面对BFRP筋进行改性。疏水涂层使BFRP筋表面接触角从63°提高到106°。之后将BFRP筋放入25℃、45℃、60℃水和海水中进行耐久性实验,探究改性前后BFRP筋吸水率、拉伸性能在长期浸泡龄期下的变化规律。试验结果表明疏水改性后的BFRP筋吸水率降低,其中45℃水环境中浸泡60天后,疏水改性BFRP筋吸水率比未改性筋降低40%。采用阿伦尼乌斯模型对改性前后BFRP筋的拉伸强度进行长期性能预测,疏水改性BFRP筋在长期服役过程中有更高拉伸强度保留率。通过制备氟化纳米二氧化硅改性自固化环氧树脂的疏水改性方法能够降低BFRP筋吸水率,提高强度保留率,延长服役寿命。

     

  • 图  1  BFRP筋表面疏水涂层制备流程

    Figure  1.  Preparation process of hydrophobic coating on BFRP surface

    图  2  BFRP筋改性前后表面形貌对比

    Figure  2.  Comparison of surface of BFRP bars before and after modification

    图  3  改性前后BFRP筋表面EDS图谱

    Figure  3.  EDS spectra of surface of BFRP bars before and after modification

    图  4  改性前后BFRP筋表面接触角

    Figure  4.  Contact angles of surface of BFRP bars before and after modification

    图  5  BFRP筋吸水率变化

    Figure  5.  Variations of water absorption of BFRP bars

    图  6  BFRP筋拉伸强度变化

    Figure  6.  Variations of tensile strength of BFRP bars

    图  7  25oC海水环境中浸泡60天BFRP筋SEM图像

    Figure  7.  SEM images of BFRP bars immersed in 25oC seawater for 60 days.

    图  8  45oC海水环境中浸泡60天BFRP筋SEM图像

    Figure  8.  SEM images of BFRP bars immersed in 45oC seawater for 60 days

    图  9  60oC海水环境中浸泡60天BFRP筋SEM图像

    Figure  9.  SEM images of BFRP bars immersed in 60oC seawater for 60 days

    图  10  海水环境下BFRP筋的Arrhenius曲线

    Figure  10.  Arrhenius curve of BFRP bars in seawater environment

    图  11  改性前后BFRP筋在25oC下长期性能退化预测曲线

    Figure  11.  Long-term performance prediction curves of BFRP bars before and after modification at 25 oC

    表  1  人工海水配比

    Table  1.   Proportion of artificial seawater

    H2O /
    L
    NaCl /
    g∙L−1
    MgCl2 /
    g∙L−1
    Na2SO4 /
    g∙L−1
    CaCl2 /
    g∙L−1
    KCl /
    g∙L−1
    1.0024.535.204.091.160.70
    下载: 导出CSV

    表  2  BFRP筋时移因子αTSF

    Table  2.   Values of αTSF factors of BFRP bars

    Temperature/ oCUnmodifiedModified
    251.001.00
    453.813.83
    609.369.45
    下载: 导出CSV
  • [1] ZHOU A, QIN R, CHOW C L, et al. Structural performance of FRP confined seawater concrete columns under chloride environment[J]. Composite Structures,2019,216:12-19. doi: 10.1016/j.compstruct.2019.02.058
    [2] 王晴晴. 玄武岩纤维增强乙烯基树脂复合材料的制备及性能研究 [D]. 哈尔滨: 哈尔滨工程大学, 2015.

    WANG Qingqing. Study on preparation and performance of basalt fiber reinforced vinyl resin composite [D]. Harbin: Harbin Engineering University, 2015(in Chinese).
    [3] DHAND V, MITTAL G, RHEE K Y, et al. A short review on basalt fiber reinforced polymer composites[J]. Composites Part B Engineering,2015,73(may):166-180.
    [4] 霍宝荣, 张向东. BFRP 筋的力学性能试验[J]. 沈阳建筑大学学报:自然科学版, 2011, 27(4):626-630.

    HUO Baorong, ZHANG Xiangdong. Mechanical performance test of BFRP bar[J]. Journal of Shenyang Jianzhu University:Natural Science Edition,2011,27(4):626-630(in Chinese).
    [5] 董志强, 吴刚. FRP筋增强混凝土结构耐久性能研究进展[J]. 土木工程学报, 2019, 52(10):1-19.

    DONG Zhiqiang, WU Gang. Research progress on durability of FRP bars reinforced concrete structures[J]. China Civil Engineering Journal,2019,52(10):1-19(in Chinese).
    [6] 吴敬宇, 咸贵军, 李惠, 等. 玄武岩纤维及其复合筋的耐久性能研究[J]. 玻璃钢/复合材料, 2011, 05(No.220):72-75.

    WU Jingyu, XIAN Guijun, LI Hui, et al. Research on durability of basalt fiber and its composite reinforcement[J]. FRP/composite materials,2011,05(No.220):72-75(in Chinese).
    [7] 陆中宇, 李永超, 谢建和. 海水海砂混凝土内玄武岩纤维增强复材筋性能退化研究[J]. 工业建筑, 2019(9):4.

    LU Zhongyu, LI Yongchao, XIE Jianhe. Study on the degradation of BFRP bars wrapped in seawater sea sand concrete[J]. Industrial building,2019(9):4(in Chinese).
    [8] ZARRELLI M, SKORDOS A A, PARTRIDGE I K. Toward a constitutive model for cure-dependent modulus of a high temperature epoxy during the cure[J]. European Polymer Journal,2010,46(8):1705-1712. doi: 10.1016/j.eurpolymj.2010.06.002
    [9] SHI J, WANG X, DING L, et al. Degradation of creep behaviors of basalt fiber-reinforced polymer tendons in salt solution[J]. Journal of Materials in Civil Engineering,2018,30(12):04018317. doi: 10.1061/(ASCE)MT.1943-5533.0002525
    [10] YI Y, ZHU D, GUO S, et al. Mitigating the deterioration of BFRP bars in seawater sea sand mortar by reducing alkalinity[J]. Construction and Building Materials,2022,317:125885. doi: 10.1016/j.conbuildmat.2021.125885
    [11] Wu C, Li V C. CFRP-ECC hybrid for strengthening of the concrete structures[J]. Composite Structures,2017,178:372-382. doi: 10.1016/j.compstruct.2017.07.034
    [12] 许小芳, 申世杰, 刘亚兰, 等. 玄武岩纤维增强环氧树脂复合材料复合机制 [J]. 复合材料学报, 2011, 28(4): 99-106.

    XU Xiaofang, SHEN Shijie, LIU Yalan, et al. Mechanism of basalt fiber reinforced epoxy [J] Journal of Composite Materials, 2011, 28(4): 99-106(in Chinese).
    [13] LI M, LIU H, GU Y, et al. Effects of carbon fiber surface characteristics on interfacial bonding of epoxy resin composite subjected to hygrothermal treatments[J]. Applied Surface Science,2014,288:666-672. doi: 10.1016/j.apsusc.2013.10.093
    [14] 吴刚, 董志强, 徐博. 海洋环境下BFRP筋与混凝土黏结性能及基本锚固长度计算方法研究[J]. 土木工程学报, 2016, 49(7):89-99.

    WU Gang, DONG Zhiqiang, XU Bo. Bond performance and calculation method for the basic anchorage length of BFRP bar with concrete in marine environment[J]. Journal of Civil Engineering,2016,49(7):89-99(in Chinese).
    [15] Wang B, Li D H, Xian G J, et al. Effect of Immersion in Water or Alkali Solution on the Structures and Properties of Epoxy Resin[J]. Polymers,2021,13(12):1902. doi: 10.3390/polym13121902
    [16] WANG Z, ZHAO X L, XIAN G, et al. Effect of sustained load and seawater and sea sand concrete environment on durability of basalt-and glass-fibre reinforced polymer (B/GFRP) bars[J]. Corrosion Science,2018,138:200-218. doi: 10.1016/j.corsci.2018.04.002
    [17] WEI B, CAO H, SONG S. Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater[J]. Corrosion Science,2011,53:426-431. doi: 10.1016/j.corsci.2010.09.053
    [18] 吴超, 吴瑞东, 蒋金桥, 等. 土木工程应用中碳纤维/环氧树脂界面在环境影响下退化的分子模拟研究进展[J]. 复合材料学报, 2020, 37(12):2941-2952.

    WU Chao, WU Ruidong, JIANG Jinqiao, et al. Recent advances in understanding environment effect on degradation of carbon fiber/epoxy matrix influence in civil engineering applications via molecular simulation[J]. Journal of Composite Materials,2020,37(12):2941-2952(in Chinese).
    [19] REN T T, TANG G W, BIAO Y, et al. One-step fabrication of robust superhydrophobic coatings with corrosion resistance by a self-curing epoxy-resin-based adhesive[J]. Surface and Coatings Technology,2019,380:125086. doi: 10.1016/j.surfcoat.2019.125086
    [20] REN T, GENG Z, HE J, et al. A versatile route to polymer-reinforced, broadband antireflective and superhydrophobic thin films without high-temperature treatment[J]. Journal of Colloid & Interface Science,2017,486:1-7.
    [21] 中国国家标准化管理委员会. 纳米薄膜接触角测量方法: GB/T 30447-2013[S]. 北京: 中国标准出版社, 2013.

    Standardization Administration of the People’s Republic of China. Measurement method for contact angle of nano-film surface: GB/T 30447-2013[S]. Beijing: China Standards Press, 2013(in Chinese).
    [22] American Society for Testing and Materials. ASTM-D-1141 Standard Practice for the Preparation of Substitute Ocean Water [S]. West Conshohocken, PA, US: American Society for Testing and Materials International, 2013.
    [23] HORI H, YAMAMOTO A, HAYAKAWA E, et al. Efficient Decomposition of Environmen-tally Persistent Perfluorocarboxylic Acids by Use of Persulfate as a Photochemical Oxidant[J]. Environmental Science & Technology,2005,39:2383.
    [24] 郭丽, 袁颐进, 冯丽贞, 等. 电活化过硫酸盐降解全氟辛酸及其中间产物的探究分析[J]. 环境科学学报, 2020, 40(06):2045-2054.

    GUO Li, YUAN Yijin, FENG Lizhen, et al. Ellectrochemical Activated Persulfate to Degrade Perfluo-rooctanoic Acid and the Analysis of Intermediate Products[J]. Acta Scientiae Circumstantiae,2020,40(06):2045-2054(in Chinese).
    [25] 张春晖, 刘育, 唐佳伟, 等. 典型工业废水中全氟化合物处理技术研究进展[J]. 中国环境科学, 2021, 41(03):1109-1118. doi: 10.3969/j.issn.1000-6923.2021.03.013

    ZHANG Chunhui, LIU Yu, TANG Jiawei, et al. Progress of Research on Treatment Technology of Perfluorinated Compounds in Typical Industrial Wastewater[J]. China Environmental Science,2021,41(03):1109-1118(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.03.013
    [26] American Society for Testing and Materials. ASTM-D-5229 Standard Test Method for Moisture Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials[S]. West Conshohocken, PA, US, : American Society for Testing and Materials International, 2014.
    [27] American Certification Institute. ACI440.3 R-04 Guide test methods for fiber-reinforced polymers(FRPs) for reinforcing or strengthening concrete structures[S]. Farmington Hills, US, American Certification Institute Committee, 2004.
    [28] LEI L, WANG Q, XU S, et al. Fabrication of superhydrophobic concrete used in marine environment with anti-corrosion and stable mechanical properties[J]. Construction and Building Materials,2020,251:118946. doi: 10.1016/j.conbuildmat.2020.118946
    [29] XU S, WANG Q, WANG N, et al. Environmentally-friendly fabrication of a recyclable oil-water separation material using copper mesh for immiscible oil/water mixtures[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2019,583:124010. doi: 10.1016/j.colsurfa.2019.124010
    [30] 王晖, 顾帼华. 固体的表面能及其亲水/疏水性[J]. 化学通报, 2019, 583(12):124010-1096.

    WANG Hui, GU Guohua. Surface free energy of solids matter and its hydrophilicity/hydrophobicity nature[J]. Chemical Bulletin,2019,583(12):124010-1096(in Chinese).
    [31] 薛伟辰, 刘亚男, 付凯, 等. 碱和海水环境下GFRP 筋的抗拉性能加速老化试验研究[J]. 华北水利水电大学学报:自然科学版, 2015, 36(1):38-42.

    XUE Weichen, LIU Yanan, FU Kai. Experimental study on tensile properties and accelerated aging of GFRP reinforcement in alkali and seawater environment[J]. Journal of North China University of Water Resources and Hydropower:Natural Science Edition,2015,36(1):38-42(in Chinese).
    [32] PHANI K K. BOSE N R. Temperature dependence of hydrothermal ageing of CSM-laminate during water immersion[J]. Composites Science and Technology,1988,19(1):81.
    [33] Chen Y, Davalos J F, Ray I. Durability prediction for GFRP reinforcing bars using short-term data of accelerated aging tests[J]. Journal of Composites for Construction,2006,10(4):279-286. doi: 10.1061/(ASCE)1090-0268(2006)10:4(279)
    [34] WANG Z, ZHAO X L, XIAN G, et al. Singh Raman R. K., Al-Saadi S, Haque A. Long-term durability of basalt- and glass-fibre reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment[J]. Construction and Building Materials,2017,139:467-489. doi: 10.1016/j.conbuildmat.2017.02.038
    [35] 中华人民共和国住房和城乡建设部. 纤维增强复合材料工程应用技术标准: GB 50608-2020[S]. 北京: 中国计划出版社, 2020.

    Ministry of housing and urban rural development of the people s republic of China. Measurement method for contact angle of nano-film surface: GB/T 30447-2013[S]. Beijing: China Planning Press, 2013(in Chinese).
    [36] 何政, 李光. 基于可靠度的FRP筋材料分项系数的确定[J]. 工程力学, 2008, 25(9):214-223.

    HE Zheng, LI Guang. Reliability-based calibartion of material partial factor of fiber reinforced polymer(FRP) rod[J]. Engineering Mechanics,2008,25(9):214-223(in Chinese).
    [37] YAO L, SANJAYAN S, SONG J L, et al. Robust Self-cleaning Surfaces that Function When Exposed to Either Air or Oil[J]. Science,2015,347(6226):1132-1135. doi: 10.1126/science.aaa0946
    [38] ZHONG Y J, GU L H, WANG S, et al. Green and Superhydrophobic Coatings Based on Tailor-Modified Lignocellulose Nanofibrils for Self-Cleaning Surfaces[J]. Industrial & Engineering Chemistry Research,2019,58(44):20323-20330.
    [39] WANG K K, Wu P, He J, et al. Evaluation of the Engineering Applications of Superhydrophobic Metal Surfaces Achieved by a Spraying-Adhering Process Using Different Combinations of Hydrophobic Particles and Adhesives[J]. Industrial & Engineering Chemistry Research,2020,59(42):18873-18886.
    [40] WANG X, ZHANG M Q, KOU R, et al. Unique Necklace-Like Phenol Formaldehyde Resin Nanofibers: Scalable Templating Synthesis, Casting Films, and Their Superhydrophobic Property[J]. Advanced Functional Materials,2016,26(28):5086-5092. doi: 10.1002/adfm.201600907
  • 加载中
计量
  • 文章访问数:  102
  • HTML全文浏览量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-11
  • 录用日期:  2022-04-08
  • 修回日期:  2022-04-08
  • 网络出版日期:  2022-04-28

目录

    /

    返回文章
    返回