留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NaOH浓度对树脂基HFO复合吸附剂的结构及除磷影响

孙健 尚依依 徐兆郢 薛崇灏 赵平歌 张格红

孙健, 尚依依, 徐兆郢, 等. NaOH浓度对树脂基HFO复合吸附剂的结构及除磷影响[J]. 复合材料学报, 2022, 39(12): 5678-5687. doi: 10.13801/j.cnki.fhclxb.20211207.002
引用本文: 孙健, 尚依依, 徐兆郢, 等. NaOH浓度对树脂基HFO复合吸附剂的结构及除磷影响[J]. 复合材料学报, 2022, 39(12): 5678-5687. doi: 10.13801/j.cnki.fhclxb.20211207.002
SUN Jian, SHANG Yiyi, XU Zhaoying, et al. Effect of NaOH concentration on structure and phosphate adsorption of polymer-based hydrated ferric oxide composite adsorbents[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5678-5687. doi: 10.13801/j.cnki.fhclxb.20211207.002
Citation: SUN Jian, SHANG Yiyi, XU Zhaoying, et al. Effect of NaOH concentration on structure and phosphate adsorption of polymer-based hydrated ferric oxide composite adsorbents[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5678-5687. doi: 10.13801/j.cnki.fhclxb.20211207.002

NaOH浓度对树脂基HFO复合吸附剂的结构及除磷影响

doi: 10.13801/j.cnki.fhclxb.20211207.002
基金项目: 国家自然科学基金(51908439);陕西省教育厅专项科学研究计划项目(19JK0395);陕西省自然科学基础研究计划资助项目(2021JM-424)
详细信息
    通讯作者:

    孙健,博士,讲师,研究方向为污水处理、再生水回用 E-mail: 201sun@163.com

  • 中图分类号: TQ424;X703

Effect of NaOH concentration on structure and phosphate adsorption of polymer-based hydrated ferric oxide composite adsorbents

  • 摘要: 树脂基水合氧化铁(Hydrated ferric oxide,HFO)复合吸附剂以磷吸附容量大、吸附速率快、洗脱率高等特点,受到广泛关注,但不同NaOH浓度制备的复合吸附剂结构和吸附性能是否一样尚不清楚。通过考察NaOH浓度对树脂基HFO复合吸附剂的结构和除磷性能影响,为优化D213-HFO复合吸附剂制备提供依据。结果表明,NaOH浓度从1 mol·L−1增加至6 mol·L−1,复合吸附剂的HFO负载量(约为16wt%,以Fe质量分数计)和晶体结构无显著差异,但复合吸附剂负载纳米HFO颗粒团聚程度降低,分布更均匀。此外,随着NaOH浓度增加,复合吸附剂的磷吸附容量先增加后稳定(18 mg·g−1)。另外,复合吸附剂吸附磷的平衡时间为240 min,更符合准一级动力学模型(R2 > 0.99),最佳吸附pH为6~8,相同浓度时共存离子对磷吸附影响程度为SO42−>Cl>NO3。在连续5个吸附洗脱周期内,复合吸附剂的磷洗脱率均接近100%。实验表明,随NaOH浓度增加,复合吸附剂负载HFO颗粒分布更均匀,磷吸附容量先增加后稳定,但晶体结构、吸附平衡时间、最佳pH范围、共存离子影响趋势及洗脱效果均无显著差异。

     

  • 图  1  D213树脂与D213-水合氧化铁(HFO)复合吸附剂的切面SEM图像

    Figure  1.  SEM images of section of D213 and D213-hydrated ferric oxide (HFO) composite adsorbents

    图  2  D213和D213-HFO复合吸附剂的FTIR图谱

    Figure  2.  FTIR spectra of D213 and D213-HFO composite adsorbents

    图  3  D213-HFO复合吸附剂的TEM图像和Fe元素线扫分布图

    Figure  3.  TEM images and Fe element line scanning distribution images of D213-HFO composite adsorbents

    图  4  D213-HFO复合吸附剂的XRD图谱

    Figure  4.  XRD patterns of D213-HFO composite adsorbents

    图  5  D213-HFO复合吸附剂对P的吸附等温线

    Figure  5.  Adsorption isotherms of P onto D213-HFO composite adsorbents

    图  6  D213和D213-HFO复合吸附剂的吸附动力学曲线

    Figure  6.  Adsorption kinetic curves of D213 and D213-HFO composite adsorbents

    图  7  pH对磷在D213-HFO复合吸附剂上吸附效果的影响

    Figure  7.  Effect of pH on phosphorus adsorption by D213-HFO composite adsorbents

    图  8  共存离子对D213和D213-HFO复合吸附剂吸附磷效果的影响

    Figure  8.  Effect of co-existing ions on phosphorus adsorption by D213 and D213-HFO composite adsorbents

    图  9  连续5个周期内D213-HFO复合吸附剂的磷吸附容量和P洗脱率

    Figure  9.  Adsorption capacity and regeneration efficiency of phosphorus by D213-HFO composite adsorbents during 5 continuous cycles

    表  1  不同NaOH浓度制备的复合吸附剂

    Table  1.   Composite adsorbents prepared with various NaOH concentrations

    AdsorbentNaOH concentration/
    (mol·L−1)
    HFO loadings/
    (Fe wt%)
    D213-HFO-1115.7
    D213-HFO-3316.0
    D213-HFO-6615.9
    Note: HFO—Hydrated ferric oxide.
    下载: 导出CSV

    表  2  D213-HFO复合吸附剂的Freundlich模型和Langmuir模型拟合参数

    Table  2.   Isothermal adsorption model fitting parameters of Langmuir and Freundlich model by D213-HFO composite adsorbents

    AdsorbentsLangmuir modelFreundlich model
    qm/(mg·g−1)b/(L·mg−1)R2K/(mg1-1/n·L1/n·g−1)1/nR2
    D213-HFO-113.310.260.9704.340.300.955
    D213-HFO-317.940.200.9734.900.340.939
    D213-HFO-618.070.150.9774.390.370.926
    Notes: qm―Maximum adsorption capacity; b—Adsorption energy; K and n―Isotherm constants; R2—Degree of fitting.
    下载: 导出CSV

    表  3  D213和D213-HFO复合吸附剂的吸附动力学拟合参数

    Table  3.   Kinetic fitting parameters of D213 and D213-HFO composite adsorbents

    AdsorbentsPseudo-first-orderPseudo-second-orderIntra-particle diffusion
    qe/
    (mg·g−1)
    k1/
    min−1
    R2qe/
    (mg·g−1)
    k2/
    (g·mg−1·min−1)
    R2C1kd1/
    (mg·g−1·min−1/2)
    R12C2kd2/
    (mg·g−1·min−1/2)
    R22
    D213 15.23 0.028 0.998 17.31 20.90 0.978 −1.91 1.83 0.972 13.53 0.11 0.616
    D213-HFO-1 19.73 0.015 0.999 20.26 6.69 0.988 −3.39 1.95 0.995 9.23 0.67 0.893
    D213-HFO-3 19.87 0.016 0.999 24.49 6.87 0.989 −3.31 1.97 0.995 9.22 0.69 0.881
    D213-HFO-6 19.84 0.017 0.999 25.47 7.38 0.989 −3.31 2.01 0.996 10.06 0.64 0.870
    Notes: k1―Pseudo-first-order kinetic constant; k2―Pseudo-second-order kinetic constant; qe―Phosphate adsorption capacity in equilibrium; kd―Intra-particle diffusion rate constant; C―Reaction constant.
    下载: 导出CSV
  • [1] 赵治国, 袁林江, 王骞, 等. 废水中有机物对铁盐除磷的影响[J]. 中国环境科学, 2020, 40(1):288-293. doi: 10.3969/j.issn.1000-6923.2020.01.032

    ZHAO Zhiguo, YUAN Linjiang, WANG Qian, et al. Effects of organic substance on ferric ion-dependent phosphorus removal in wastewaters[J]. China Environmental Science,2020,40(1):288-293(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.01.032
    [2] ZHANG H, ELSKENS M, CHEN G, et al. Influence of seawater ions on phosphate adsorption at the surface of hydrous ferric oxide (HFO)[J]. Science of the Total Environment,2020,721:137826. doi: 10.1016/j.scitotenv.2020.137826
    [3] 董浩, 花铭. 树脂基纳米复合材料吸附水中As(III)的性能比较研究[J]. 离子交换与吸附, 2017, 33(5):385-394.

    DONG Hao, HUA Ming. Comparative study of arsenite removal from water by polymer-supported hydrated metallic oxides[J]. Ion Exchange and Adsorption,2017,33(5):385-394(in Chinese).
    [4] MAHARDIKA D, PARK H S, CHOO K H. Ferrihydrite-impregnated granular activated carbon (FH@GAC) for efficient phosphorus removal from wastewater secondary effluent[J]. Chemosphere,2018,207:527-533. doi: 10.1016/j.chemosphere.2018.05.124
    [5] LIU T, WANG H, ZHANG Z, et al. Application of synthetic iron-oxide coated zeolite for the pollution control of river sediments[J]. Chemosphere,2017,180:160-168. doi: 10.1016/j.chemosphere.2017.04.023
    [6] WANG Z, LIN Y, WU D, et al. Hydrous iron oxide modified diatomite as an active filtration medium for phosphate capture[J]. Chemosphere,2016,144:1290-1298. doi: 10.1016/j.chemosphere.2015.10.015
    [7] WIRIYATHAMCHAROEN S, SARKAR S, JIEMVARANGKUL P, et al. Synthesis optimization of hybrid anion exchanger containing triethylamine functional groups and hydrated Fe(III) oxide nanoparticles for simultaneous nitrate and phosphate removal[J]. Chemical Engineering Journal,2020,381:122671. doi: 10.1016/j.cej.2019.122671
    [8] MUHAMMAD A, SOARES A, JEFFERSON B. The impact of background wastewater constituents on the selectivity and capacity of a hybrid ion exchange resin for phosphorus removal from wastewater[J]. Chemosphere,2019,224:494-501. doi: 10.1016/j.chemosphere.2019.01.085
    [9] CUMBAL L, SENGUPTA A K. Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: Role of Donnan membrane effect[J]. Environmental Science & Technology,2005,39(17):6508-6515.
    [10] BLANEY L M, CINAR S, SENGUPTA A K. Hybrid anion exchanger for trace phosphate removal from water and wastewater[J]. Water Research,2007,41(7):1603-1613. doi: 10.1016/j.watres.2007.01.008
    [11] MARCUS Y. Thermodynamics of solvation of ions. Part 5. —Gibbs free energy of hydration at 298.15 K[J]. Journal of the Chemical Society, Faraday Transactions,1991,87(18):2995-2999. doi: 10.1039/FT9918702995
    [12] GU B H, BROWN G M, MAYA L, et al. Regeneration of perchlorate (ClO4)-loaded anion exchange resins by a novel tetrachloroferrate (FeCl4) displacement technique[J]. Environmental Science & Technology,2001,35(16):3363-3368.
    [13] PAN B, WU J, PAN B, et al. Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents[J]. Water Research,2009,43(17):4421-4429. doi: 10.1016/j.watres.2009.06.055
    [14] PAN B, CHEN D, ZHANG H, et al. Stability of hydrous ferric oxide nanoparticles encapsulated inside porous matrices: Effect of solution and matrix phase[J]. Chemical Engineering Journal,2018,347:870-876. doi: 10.1016/j.cej.2018.04.130
    [15] 刘艳, 高洋, 赵昕, 等. 凝胶型树脂载纳米水合氧化铁复合材料的制备与除As(V)特性[J]. 高分子学报, 2018(7):939-948.

    LIU Yan, GAO Yang, ZHAO Xin, et al. A gel resin-supported nano-hydrated iron oxide for arsenate sorption from water[J]. Acta Polymerica Sinica,2018(7):939-948(in Chinese).
    [16] 赵继旭, 胡建龙, 邵立南, 等. HCl浓度对水合氧化铁复合吸附剂磷吸附效能的影响[J]. 复合材料学报, 2021, 38(4):1139-1146.

    ZHAO Jixu, HU Jianlong, SHAO Li'nan, et al. Effect of HCl concentration on phosphate adsorption behavior of hydrated ferrous oxide composite adsorbents[J]. Acta Materiae Compositae Sinica,2021,38(4):1139-1146(in Chinese).
    [17] 孙健, 徐兆郢, 赵平歌, 等. 水合氧化铁负载量对丙烯酸树脂基复合吸附剂的结构及除磷影响[J]. 复合材料学报, 2021, 38(8):2595-2604.

    SUN Jian, XU Zhaoying, ZHAO Pingge, et al. Effect of hydrated ferric oxide loadings on structure and phosphate adsorption of acrylic polymer-supported composite adsorbents[J]. Acta Materiae Compositae Sinica,2021,38(8):2595-2604(in Chinese).
    [18] KOCIOŁEK-BALAWEJDER E, STANISŁAWSKA E, CIECHANOWSKA A. Iron(III) (hydr)oxide loaded anion exchange hybrid polymers obtained via tetrachloroferrate ionic form—Synthesis optimization and characterization[J]. Journal of Environmental Chemical Engineering,2017,5(4):3354-3361. doi: 10.1016/j.jece.2017.06.043
    [19] LI S, YANG Q, ZHONG Y, et al. Adsorptive bromate removal from aqueous solution by commercial strongly basic resin impregnated with hydrated ferric oxide (HFO): Kinetics and equilibrium studies[J]. Journal of Chemical & Engineering Data,2016,61(3):1305-1312.
    [20] 中国石油和化学工业联合会. 离子交换树脂预处理方法: GB/T 5476—2013[S]. 北京: 中国标准出版社, 2013.

    China Petroleum and Chemical Industry Federation. Methods of pretreating ion exchange resin: GB/T 5476—2013[S]. Beijing: China Standards Press, 2013(in Chinese).
    [21] 国家环境保护局标准处. 钼酸铵分光光度法: GB/T 11893—1989[S]. 北京: 中国标准出版社, 1989.

    Standards Division of State Environmental Protection Administration. Ammonium molybdate spectrophotometric method: GB/T 11893—1989[S]. Beijing: China Standards Press, 1989(in Chinese).
    [22] SU Y, CUI H, LI Q, et al. Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles[J]. Water Research,2013,47(14):5018-5026. doi: 10.1016/j.watres.2013.05.044
    [23] ALSHEHRI S M, NAUSHAD M, AHAMAD T, et al. Synthesis, characterization of curcumin based ecofriendly antimicrobial bio-adsorbent for the removal of phenol from aqueous medium[J]. Chemical Engineering Journal,2014,254:181-189. doi: 10.1016/j.cej.2014.05.100
    [24] GONG C, CHEN D, JIAO X, et al. Continuous hollow α-Fe2O3 and α-Fe fibers prepared by the sol-gel method[J]. Journal of Materials Chemistry,2002,12(6):1844-1847. doi: 10.1039/b201243j
    [25] ZHOU K, WU B, SU L, et al. Enhanced phosphate removal using nanostructured hydrated ferric-zirconium binary oxide confined in a polymeric anion exchanger[J]. Chemical Engineering Journal,2018,345:640-647. doi: 10.1016/j.cej.2018.01.091
    [26] WANG J, ZHANG S, PAN B, et al. Hydrous ferric oxide-resin nanocomposites of tunable structure for arsenite removal: Effect of the host pore structure[J]. Journal of Hazardous Materials,2011,198:241-246. doi: 10.1016/j.jhazmat.2011.10.036
    [27] KARIM A H, JALIL A A, TRIWAHYONO S, et al. Amino modified mesostructured silica nanoparticles for efficient adsorption of methylene blue[J]. Journal of Colloid and Interface Science,2012,386(1):307-314. doi: 10.1016/j.jcis.2012.07.043
    [28] 高源, 贺维鹏, 施周, 等. 聚硫酸铁强化混凝除锑(V)作用机制探讨[J]. 中国环境科学, 2015, 35(11):3346-3351. doi: 10.3969/j.issn.1000-6923.2015.11.020

    GAO Yuan, HE Weipeng, SHI Zhou, et al. Discussion on action mechanisms of antimony(V) removal by enhanced coagulation with polymeric ferric sulphate[J]. China Envi-ronmental Science,2015,35(11):3346-3351(in Chinese). doi: 10.3969/j.issn.1000-6923.2015.11.020
    [29] ZENG H, FISHER B, GIAMMAR D E. Individual and competitive adsorption of arsenate and phosphate to a high-surface-area iron oxide-based sorbent[J]. Environmental Science & Technology,2008,42(1):147-152.
    [30] KHARE N, HESTERBERG D, MARTIN J D. XANES investigation of phosphate sorption in single and binary systems of iron and aluminum oxide minerals[J]. Environmental Science & Technology,2005,39(7):2152-2160.
    [31] LEFEVRE G. In situ Fourier-transform infrared spectroscopy studies of inorganic ions adsorption on metal oxides and hydroxides[J]. Advances in Colloid and Interface Science,2004,107(2):109-123.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  778
  • HTML全文浏览量:  372
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-29
  • 修回日期:  2021-11-25
  • 录用日期:  2021-11-26
  • 网络出版日期:  2021-12-09
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回