留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磷化处理和双马来酰亚胺包覆铁粉的高性能磁粉芯的工艺优化

余红雅 关少聪 李竞舟 刘仲武 郭宝春 陈榕寅

余红雅, 关少聪, 李竞舟, 等. 基于磷化处理和双马来酰亚胺包覆铁粉的高性能磁粉芯的工艺优化[J]. 复合材料学报, 2022, 40(0): 1-8
引用本文: 余红雅, 关少聪, 李竞舟, 等. 基于磷化处理和双马来酰亚胺包覆铁粉的高性能磁粉芯的工艺优化[J]. 复合材料学报, 2022, 40(0): 1-8
Hongya YU, Shaocong GUAN, Jingzhou LI, Zhongwu LIU, Baochun GUO, Rongyin CHEN. Process optimization of high-performance soft magnetic composite based on phosphate and bismaleimide coated iron powders[J]. Acta Materiae Compositae Sinica.
Citation: Hongya YU, Shaocong GUAN, Jingzhou LI, Zhongwu LIU, Baochun GUO, Rongyin CHEN. Process optimization of high-performance soft magnetic composite based on phosphate and bismaleimide coated iron powders[J]. Acta Materiae Compositae Sinica.

基于磷化处理和双马来酰亚胺包覆铁粉的高性能磁粉芯的工艺优化

基金项目: 东莞市引进创新科研团队项目(2020607231010);广东省自然科学基金面上项目(2021 A1515012464);
详细信息
    通讯作者:

    余红雅,女,博士,副教授;研究方向:磁性功能材料、材料表面技术 E-mail:yuhongya@scut.edu.cn

  • 中图分类号: TB331

Process optimization of high-performance soft magnetic composite based on phosphate and bismaleimide coated iron powders

Funds: Dongguan Innovative Research Team Program (2020607231010);Guangdong Provincial Natural Science Fund of China (2021 A1515012464);
  • 摘要: 随着电子行业的迅速发展,电子器件正朝着小型化、集成化和高频化方向发展。磁粉芯材料会因应用频率提高引起磁损耗剧烈增加和严重发热而出现磁性能下降,因此磁粉芯材料的高频应用对其损耗特性和可靠性提出更高的要求。因此,本工作通过磷化处理和双马来酰亚胺树脂(BMI)包覆制备出了具有磷化-双马来酰亚胺@Fe结构的高性能磁粉芯,并研究了包覆方式对磁粉芯可靠性的影响。当双马来酰亚胺树脂添加量为2wt.%,压制压力为800 MPa时,磁粉芯的综合磁性能最佳,有效磁导率为32.2,50 mT@200 kHz条件下的总损耗为1181 kW/m3,1 MHz条件下的品质因数Q可达到46.2。双马来酰亚胺(BMI)树脂包覆形成的绝缘层可以起到应力缓冲的作用,减少压制过程中的内应力形成,降低磁粉芯的总损耗。傅里叶红外光谱分析证明磁粉芯的老化是由磁粉的氧化引起的,通过磷化处理和BMI树脂包覆能有效减缓磁粉氧化并提高磁粉芯的高温可靠性,经过180℃长期加速老化试验后,磁性能保持稳定。

     

  • 图  1  磷化处理前后羰基铁粉的XRD图谱

    Figure  1.  XRD spectra of CIP before and after phosphating

    图  2  双马来酰亚胺树脂(BMI)树脂的DSC/TG曲线

    Figure  2.  DSC / TG curve of bismaleimide (BMI) resin

    图  3  磁粉的微观形貌(a,b)羰基铁粉(CIP)粉末;(c,d)磷化羰基铁粉(PCIP)粉末;(e,f,g,h)PCIP粉末的元素分布图

    Figure  3.  Micro morphology of magnetic powders (a, b) micro morphology of carbonyl iron powder (CIP); (c, d) micro morphology of phosphatized carbonyl iron powder (PCIP); (e, f, g, h) Element distribution diagram of PCIP

    图  4  不同BMI树脂添加量的磁粉微观形貌:(a) 1.0wt.%;(b) 2.0wt.%;(c) 3.0wt.%

    Figure  4.  Micro morphology of magnetic powders with different addition of BMI resin: (a) 1.0wt.%; (b) 2.0wt.%; (c) 3.0wt.%

    图  5  不同磁粉的磁化曲线

    Figure  5.  Magnetization curves of different magnetic powders

    图  6  树脂添加量及压制压力对磁粉芯磁性能的影响:(a)密度ρ(b)磁导率μe(c)1 MHz条件下的品质因数Q

    Figure  6.  Effects of resin addition and press pressure on the magnetic properties of the composites: (a) density ρ (b) permeability μe (c) quality factor Q under 1 MHz

    图  7  800 MPa压制压力下不同树脂添加量制备的磁粉芯磁性能:(a)磁导率μe(b)品质因数Q

    Figure  7.  Magnetic properties of soft magnetic composites with different resin addition prepared under 800 MPa: (a) permeability μe (b) quality factor Q

    图  8  800 MPa压制压力下BMI树脂添加量对磁损耗50 mT @20 kHz~300 kHz)的影响

    Figure  8.  Effect of BMI resin addition on magnetic loss (50 mT @20 kHz~300 kHz) of soft magnetic composites prepared under 800 MPa

    图  9  磁粉芯老化前后的表面形貌

    Figure  9.  Surface morphologies of soft magnetic composites before and after aging

    图  10  老化前后PCIP样品的傅里叶红外光谱分析

    Figure  10.  FTIR analysis of PCIP samples before and after aging

    表  1  800 MPa压制压力下磁粉芯的性能数据

    Table  1.   Properties data of soft magnetic composites prepared under 800 MPa

    Samples numberρ/(g·cm−3)μeQ(1 MHz)Ps /(kW·m−3) @50mT
    100 kHz200 kHz300 kHz
    CIP6.9269.918.2335818410
    CIP@2wt.%BMI6.6945.553.356911711829
    PCIP6.8052.762.263013132013
    PCIP@1wt.%BMI6.7240.744.559411231766
    PCIP@2wt.%BMI6.4332.246.261211811858
    PCIP@3wt.%BMI6.2021.941.465612902065
    Notes: “ρ”—Density; “μe”—Effective permeability; “Q(1 MHz)”—Quality factor at 1 MHz; “Ps”—Total loss.
    下载: 导出CSV

    表  2  高温加速老化实验前后磁粉芯磁性能

    Table  2.   Magnetic performance of soft magnetic composites before and after high-temperature accelerated aging test

    SampleAging
    time 0 h
    Aging
    time 100 h
    Change
    rate
    PCIPμe44.643.81.7%
    Q(1 MHz)62.224.261.1%
    CIP@2wt.%
    BMI
    μe37.236.32.4%
    Q(1 MHz)53.333.537.1%
    PCIP@2wt.%
    BMI
    μe29.328.72.0%
    Q(1 MHz)46.245.61.3%
    下载: 导出CSV
  • [1] 吴深, 李杰超, 王晓威, 等. 高频低损耗软磁复合材料的研究进展[J]. 轻功学报, 2020, 35(5):61-70.

    WU S, LI J, WANG X, et al. Development of high-frequency low-loss soft magnetic composites[J]. Journal of Light Industry,2020,35(5):61-70(in Chinese).
    [2] SHOKROLLAHI H, JANGHORBAN K. Soft magnetic composite materials (SMCs)[J]. Journal of Materials Processing Technology,2007,189(1-3):1-12. doi: 10.1016/j.jmatprotec.2007.02.034
    [3] SUNDAY K J, TAHERI M L. Soft magnetic composites: recent advancements in the technology[J]. Metal Powder Report,2017,72(6):425-429. doi: 10.1016/j.mprp.2016.08.003
    [4] PéRIGO E A, WEIDENFELLER B, KOLLáR P, et al. Past, present, and future of soft magnetic composites[J]. Applied Physics Reviews,2018,5(3):1-37.
    [5] SILVEYRA J M, FERRARA E, HUBER D L, et al. Soft magnetic materials for a sustainable and electrified world[J]. Science,2018,362(6413):1-9.
    [6] LI K, CHENG D, YU H, et al. Process optimization and magnetic properties of soft magnetic composite cores based on phosphated and mixed resin coated Fe powders[J]. Journal of Magnetism and Magnetic Materials,2020,501(166455):1-10.
    [7] PAN Y, QIAN L, WANG X, et al. Hybrid Phosphate-Alumina Iron-Based Core-Shell Soft Magnetic Composites Fabricated by Sol-Gel Method and Ball Milling Method[J]. Metals,2020,10(2):1-10.
    [8] HSIANG H, FAN L, HUNG J. Effects of the sodium stearate addition on the corrosion resistance and electromagnetic properties of phosphatized iron-based SMCs[J]. Journal of Magnetism and Magnetic Materials,2019,490:1-6.
    [9] TAGHVAEI A H, SHOKROLLAHI H, JANGHORBAN K, et al. Eddy current and total power loss separation in the iron–Phosphate-polyepoxy soft magnetic composites[J]. Materials and Design,2009,30:3989-3995. doi: 10.1016/j.matdes.2009.05.026
    [10] HUANG M, WU C, JIANG Y, et al. Evolution of phosphate coatings during high-temperature annealing and its influence on the Fe and FeSiAl soft magnetic composites[J]. Journal of Alloys and Compounds,2015,644:124-130. doi: 10.1016/j.jallcom.2015.04.201
    [11] PAN Y, PENG J, QIAN L, et al. Effects of compaction and heat treatment on the soft magnetic properties of iron-based soft magnetic composites[J]. Materials Research Express,2020,7(1):1-14.
    [12] CHEN D, LI K, YU H, et al. Effects of secondary particle size distribution on the magnetic properties of carbonyl iron powder cores[J]. Journal of Magnetism and Magnetic Materials,2020,497:1-8.
    [13] SUGIMURA K, MIYAJIMA Y, SONEHARA M, et al. Formation of high electrical-resistivity thin surface layer on carbonyl-iron powder (CIP) and thermal stability of nanocrystalline structure and vortex magnetic structure of CIP[J]. AIP Advances,2016,6(5):1-8.
    [14] WANG J, FAN X A, WU Z, et al. Intergranular insulated Fe/SiO2 soft magnetic composite for decreased core loss[J]. Advanced Powder Technology,2016,27(4):1189-1194. doi: 10.1016/j.apt.2016.04.002
    [15] YAGHTIN M, TAGHVAEI A H, HASHEMI B, et al. Structural and magnetic properties of Fe–Al2O3 soft magnetic composites prepared using the sol–gel method[J]. International Journal of Materials Research,2014,105(5):474-479. doi: 10.3139/146.111040
    [16] SUNDAY K J, DARLING K A, HANEJKO F G, et al. Al2O3 "self-coated” iron powder composites via mechanical milling[J]. Journal of Alloys and Compounds,2015,653:61-68. doi: 10.1016/j.jallcom.2015.08.260
    [17] ZHENG J, ZHENG H, LEI J, et al. Magnetic properties and microstructure of iron-based soft magnetic composites with Al2O3 insulating coating by one-pot synthesis method[J]. Journal of Magnetism and Magnetic Materials,2020,499:1-7.
    [18] TAGHVAEI A H, SHOKROLLAHI H, GHAFFARI M, et al. Influence of particle size and compaction pressure on the magnetic properties of iron-phenolic soft magnetic composites[J]. Journal of Physics and Chemistry of Solids,2010,71(1):7-11. doi: 10.1016/j.jpcs.2009.08.008
    [19] PFUTZNER H, SCHONHUBER P, ERBIL B, et al. Problems of loss separation for crystalline and consolidated amorphous soft magnetic materials[J]. IEEE Transactions on Magnetics,1991,27(3):3426-3432. doi: 10.1109/20.79085
    [20] IREDALE R J, WARD C, HAMERTON I. Modern advances in bismaleimide resin technology: A 21 st century perspective on the chemistry of addition polyimides[J]. Progress in Polymer Science,2017,69:1-21. doi: 10.1016/j.progpolymsci.2016.12.002
    [21] GOUZMAN I, GROSSMAN E, VERKER R, et al. Advances in Polyimide-Based Materials for Space Applications[J]. Adv Mater,2019,31(18):1-15.
    [22] HSIANG H-I, FAN L-F, HUNG J-J. Phosphoric acid addition effect on the microstructure and magnetic properties of iron-based soft magnetic composites[J]. Journal of Magnetism and Magnetic Materials,2018,447:1-8. doi: 10.1016/j.jmmm.2017.08.096
    [23] WANG D, XIONG X, REN R, et al. Characterization and properties of high-temperature resistant structure adhesive based on novel toughened bismaleimide resins[J]. High Performance Polymers,2020,33(5):488-496.
    [24] HEIM L, FARSHCHI M, MORGENEYER M, et al. Adhesion of carbonyl iron powder particles studied by atomic force microscopy[J]. Journal of Adhesion Science and Technology,2005,19(3-5):199-213. doi: 10.1163/1568561054352658
    [25] LUKSHINA V A, DMITRIEVA N V, VOLKOVA E G, et al. Magnetic Properties of the Fe63.5 Ni10 Cu1- Nb3 Si13.5 B9 Alloy Nanocrystallized in the Presence of Tensile Stresses[J]. Physics of Metals and Metallography,2019,120(4):320-324. doi: 10.1134/S0031918X19040070
    [26] 潘贇, 刘天成, 李广敏, 等. 张力退火感生各向异性对纳米晶合金磁性能的影响[J]. 材料研究学报, 2020, 34(10):753-760. doi: 10.11901/1005.3093.2020.137

    PAN Y, LIU T, LI G, et al. Effect ofTension Annealing Induced-anisotropy on Magnetic Properties of Nanocrystalline Alloy[J]. Chinese Journal of materials research,2020,34(10):753-760(in Chinese). doi: 10.11901/1005.3093.2020.137
    [27] REE M. High performance polyimides for applications in microelectronics and flat panel displays[J]. Macromolecular Research,2006,14(1):1-33. doi: 10.1007/BF03219064
    [28] ZHAO Y, LI J, ZHAO L, et al. Synthesis of amidoxime-functionalized Fe3O4@SiO2 core–shell magnetic microspheres for highly efficient sorption of U(VI)[J]. Chemical Engineering Journal,2014,235:275-283. doi: 10.1016/j.cej.2013.09.034
    [29] LIU D, WU C, YAN M, et al. Correlating the microstructure, growth mechanism and magnetic properties of FeSiAl soft magnetic composites fabricated via HNO3 oxidation[J]. Acta Materialia,2018,146:294-303. doi: 10.1016/j.actamat.2018.01.001
    [30] HOU Z, YAN P, SUN B, et al. An excellent soft magnetic Fe/Fe3O4-FeSiAl composite with high permeability and low core loss[J]. Results in Physics,2019,14:1-7.
    [31] SCHWERTMANN U, CORNELL R M. Iron Oxides in the Laboratory Preparation and Characterization[J]. Weinheim, Germany:VCH Verlagsgesellschaft,1992:68-127.
  • 加载中
计量
  • 文章访问数:  61
  • HTML全文浏览量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-28
  • 录用日期:  2022-05-08
  • 修回日期:  2022-04-28
  • 网络出版日期:  2022-06-01

目录

    /

    返回文章
    返回