留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稻秸增强酚醛泡沫保温材料的制备与性能

郝硕 谢浩 李爽 王伟宏

郝硕, 谢浩, 李爽, 等. 稻秸增强酚醛泡沫保温材料的制备与性能[J]. 复合材料学报, 2023, 40(10): 5630-5640. doi: 10.13801/j.cnki.fhclxb.20230110.001
引用本文: 郝硕, 谢浩, 李爽, 等. 稻秸增强酚醛泡沫保温材料的制备与性能[J]. 复合材料学报, 2023, 40(10): 5630-5640. doi: 10.13801/j.cnki.fhclxb.20230110.001
HAO Shuo, XIE Hao, LI Shuang, et al. Study on the preparation and properties of rice straw reinforced phenolic foam insulation material[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5630-5640. doi: 10.13801/j.cnki.fhclxb.20230110.001
Citation: HAO Shuo, XIE Hao, LI Shuang, et al. Study on the preparation and properties of rice straw reinforced phenolic foam insulation material[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5630-5640. doi: 10.13801/j.cnki.fhclxb.20230110.001

稻秸增强酚醛泡沫保温材料的制备与性能

doi: 10.13801/j.cnki.fhclxb.20230110.001
基金项目: 国家自然科学基金(32071704)
详细信息
    通讯作者:

    王伟宏,博士,教授,博士生导师,研究方向为生物质复合材料 E-mail: weihongwang2001@nefu.edu.cn

  • 中图分类号: S784;TB332

Study on the preparation and properties of rice straw reinforced phenolic foam insulation material

Funds: National Natural Science Foundation of China (32071704)
  • 摘要: 将水稻秸秆与酚醛树脂(PF)泡沫复合,改进PF泡沫本身脆性大、力学强度低的问题。探究稻秸长度(8 cm、12 cm和16 cm)、形态(横切秸秆段、斜切秸秆段、搓碾成丝)对复合材料物理性质、力学及燃烧性能的影响。结果表明,稻秸内外表面与PF泡沫基体产生明显机械啮合;稻秸/PF泡沫复合材料的弯曲强度、压缩强度与垂直于板面的抗拉强度均优于PF泡沫;16 cm斜切处理稻秸/PF泡沫复合材料弯曲强度达到1.18 MPa,较PF泡沫提高195.3%;16 cm搓碾处理稻秸/PF泡沫复合材料在应变为10%时的压缩应力和垂直于板面的抗拉强度分别为251.30 kPa与121.26 kPa,较PF分别提高了112.1%和20.7%。垂直燃烧与极限氧指数(LOI)测试结果表明,PF泡沫对稻秸表现出较好的包覆作用,复合材料整体热稳定性与PF泡沫几乎持平,LOI值几乎无变化,稻秸/PF泡沫复合材料和PF泡沫可燃性测试结果均达到B1级建筑材料要求,具有良好的阻燃性能。8 cm斜切处理稻秸增强PF泡沫复合材料综合力学性能最优。

     

  • 图  1  水稻秸秆预处理后的形态

    Figure  1.  Morphologies of rice straw after pre-processing

    图  2  稻秸/PF泡沫复合材料的制备过程

    Figure  2.  Preparation process of rice straw/PF foam composite

    图  3  复合材料表面 ((a1) PF泡沫; ((b1)~(d1)) 横切、斜切、搓碾稻秸/PF泡沫复合材料)、横截面上的稻秸分布 ((a2) PF泡沫; ((b2)~(d2)) 横切、斜切、搓碾稻秸/PF泡沫复合材料)、PF泡沫对稻秸的渗透情况 (((b3)~(d3)) 横切、斜切、搓碾稻秸)及密度 (e)

    Figure  3.  Appearance ((a1) PF; ((b1)-(d1)) Cross-cutting, slope-cutting, grinding rice straw/PF foam composite), inner distribution of rice straw in cross-section ((a2) PF; ((b2)-(d2)) Cross-cutting, slope-cutting, grinding rice straw/PF foam composite), the filling of PF foam around the rice straw (((b3)-(d3)) cross-cutting, slope-cutting rice straw, grinding rice straw) and density (e) of straw/PF foam composites

    图  4  PF泡沫从稻秸内外表面剥离后,剥离界面的表面形貌:(a) 稻秸外表面;(b) 稻秸内表面;(c) 从秸秆外表面剥离出的PF泡沫;(d) 从秸秆内表面剥离出的PF泡沫

    Figure  4.  Surface morphologies of the stripping interface after PF foam stripped from the inner and outer surfaces of the rice straw: (a) Outer surface of the rice straw; (b) Inner surface of the rice straw; (c) PF foam stripped from the outer surface of the rice straw; (d) PF foam stripped from the inner surface of the rice straw

    图  5  稻秸/PF泡沫复合材料的导热系数

    Figure  5.  Thermal conductivity of straw/PF foam composites

    图  6  稻秸/PF泡沫复合材料的应力-应变及弯曲强度曲线

    Figure  6.  Stress-strain and flexural strength curves of straw/PF foam composites

    图  7  相对应变为10%时的压缩应力

    Figure  7.  Compressive stress of 10% relative deformation

    图  8  稻秸/PF泡沫复合材料垂直于板面的抗拉强度 (a )与试件破坏形态 ((b) PF泡沫;(c) 横切;(d) 斜切;(e) 搓碾)

    Figure  8.  Tensile strength perpendicular to the face (a) of straw/PF foam composites and interface after destruction ((b) PF; (c) Cross-cutting; (d) Slope-cutting; (e) Grinding)

    图  9  PF泡沫和稻秸/PF泡沫复合材料的垂直燃烧情况

    Figure  9.  Vertical combustion of PF and rice straw/PF foam composites

    表  1  不同稻秸添加量的稻秸/酚醛树脂(PF)泡沫材料的制备及性能

    Table  1.   Preparation and properties of rice straw/phenolic resin (PF) foam composite under different amounts of rice straw

    Foaming resin/gRice straw/gDistribution of rice straw in compositeFoaming resin in the mold overflowsFlexural strength/MPa
    PF foam60 0Almost no overflow0.39
    Rice straw/PF foam composite6010Unevenly distributed after foamingA small amount of foaming
    resin overflows
    0.50
    6020Not bad orientation of rice strawA small amount of foaming
    resin overflows
    0.56
    6030Good orientation of rice strawSome foaming resin overflows0.70
    6040Poor foam filling performance
    between rice straws
    A lot of foaming resin overflows0.41
    下载: 导出CSV

    表  2  稻秸/PF泡沫复合材料极限氧指数(LOI)测试结果

    Table  2.   Results of limited oxygen index (LOI) test on rice straw/PF foam composites

    Samplesk1/%k2/%k3/%k4/%k5/%k6/%k'/%
    Rice straw25.725.525.525.425.225.225.4
    PF36.636.436.636.536.636.536.5
    8 cm/Cross-cutting/PF36.136.035.735.635.435.635.7
    12 cm/Cross-cutting/PF35.535.736.536.236.636.436.2
    16 cm/Cross-cutting/PF36.335.636.135.735.835.935.9
    8 cm/Slope-cutting/PF36.235.435.535.036.135.635.6
    12 cm/Slope-cutting/PF35.335.136.435.934.736.135.6
    16 cm/Slope-cutting/PF35.635.936.336.336.536.436.2
    8 cm/Grinding/PF36.435.635.135.335.136.035.6
    12 cm/Grinding/PF36.335.336.335.835.535.235.7
    16 cm/Grinding/PF35.036.136.036.136.436.335.9
    Notes: ki(i=1, 2...6)—Specimen number of the LOI test; k'—Average of the LOI test results.
    下载: 导出CSV

    表  3  稻秸/PF泡沫复合材料燃烧性能测试结果

    Table  3.   Results of combustion performance tests on rice straw/PF foam composites

    SampleVirtical burning test
    (Ignition time: 10 s)
    Flammability test
    (Ignition time: 30 s)
    Flame height/
    cm
    After flame
    time/s
    After glow
    time/s
    Residual mass
    fraction/wt%
    Flame
    height/mm
    Flaming
    debris
    PF 0 0 5.62 91.3 83 0
    8 cm/Cross-cutting/PF 0 0 5.63 95.1 91 0
    12 cm/Cross-cutting/PF 0 0 9.29 95.3 105 0
    16 cm/Cross-cutting/PF 0 0 8.40 94.4 89 0
    8 cm/Slope-cutting/PF 0 0 8.51 95.0 93 0
    12 cm/Slope-cutting/PF 0 0 5.56 94.7 97 0
    16 cm/Slope-cutting/PF 0 0 6.99 95.3 102 0
    8 cm/Grinding/PF 0 0 8.86 95.2 108 0
    12 cm/Grinding/PF 0 0 7.89 94.7 99 0
    16 cm/Grinding/PF 0 0 6.34 94.9 102 0
    下载: 导出CSV
  • [1] NODEH-FARAHANI D, BENTLEY J N, CRILLEY L R, et al. A boron dipyrromethene (BODIPY) based probe for selective passive sampling of atmospheric nitrous acid (HONO) indoors[J]. Analyst,2021,146(18):5756-5766. doi: 10.1039/D1AN01089A
    [2] DESCHENES O. Temperature, human health, and adaptation: A review of the empirical literature[J]. Energy Economics,2014,46:606-619. doi: 10.1016/j.eneco.2013.10.013
    [3] AL-HOMOUD M S. Performance characteristics and practical applications of common building thermal insulation materials[J]. Building and Environment,2005,40(3):353-366. doi: 10.1016/j.buildenv.2004.05.013
    [4] LI S, CUI B, XIE H, et al. Strong cellulose-based light-management film with ultraviolet blocking and near-infrared shielding performance[J]. ACS Applied Materials & Interfaces, 2022, 14(37): 42522-42530.
    [5] HASSAN T, JAMSHAID H, MISHRA R, et al. Acoustic, mechanical and thermal properties of green composites reinforced with natural fibers waste[J]. Polymers, 2020, 12(3): 654.
    [6] PILATO L. Phenolic resins: A century of progress[M]. Heidelberg: Springer, 2010: 190.
    [7] 赵君行. 酚醛泡沫塑料在外墙保温中的应用研究[J]. 江西建材, 2021(1):121,123.

    ZHAO Junxing. Study on application of phenolic foam in external wall insulation[J]. Jiangxi Building Materials,2021(1):121,123(in Chinese).
    [8] 葛铁军, 胡晓岐, 王东奇. 对苯二甲醇改性酚醛泡沫的性能研究[J]. 化工新型材料, 2020, 48(8):80-84, 90.

    GE Tiejun, HU Xiaoqi, WANG Dongqi. Study on property of p-phenylenediethanol modified phenolic foam[J]. New Chemical Materials,2020,48(8):80-84, 90(in Chinese).
    [9] TANG Q, FANG L, GUO W. Effects of bamboo fiber length and loading on mechanical, thermal and pulverization properties of phenolic foam composites[J]. Journal of Bioresources and Bioproducts,2019,4(1):51-59. doi: 10.21967/jbb.v4i1.184
    [10] ZHOU M, SHI H, LI C, et al. Depolymerization and activation of alkali lignin by solid acid-catalyzed phenolation for preparation of lignin-based phenolic foams[J]. Industrial & Engineering Chemistry Research,2020,59(32):14296-14305.
    [11] MOUGEL C, GARNIER T, CASSAGNAU P, et al. Phenolic foams: A review of mechanical properties, fire resistance and new trends in phenol substitution[J]. Polymer,2019,164:86-117. doi: 10.1016/j.polymer.2018.12.050
    [12] XI Z, LI D, FENG Z. Characteristics of polymorphic foam for inhibiting spontaneous coal combustion[J]. Fuel,2017,206:334-341. doi: 10.1016/j.fuel.2017.06.022
    [13] YU Y, WANG Y, XU P, et al. Preparation and characterization of phenolic foam modified with bio-oil[J]. Materials,2018,11(11):2228. doi: 10.3390/ma11112228
    [14] SARIKA P R, NANCARROW P, KHANSAHEB A, et al. Progress in bio-based phenolic foams: Synthesis, properties, and applications[J]. ChemBioEng Reviews,2021,8(6):612-632. doi: 10.1002/cben.202100017
    [15] DEL SAZ-OROZCO B, VIRGINIA ALONSO M, OLIET M, et al. Effects of formulation variables on density, compressive mechanical properties and morphology of wood flour-reinforced phenolic foams[J]. Composites Part B: Engineering,2014,56:546-552. doi: 10.1016/j.compositesb.2013.08.078
    [16] 李玲, 许玉芝, 王春鹏, 等. 丁腈橡胶粉改性酚醛树脂泡沫的性能与微观结构研究[J]. 林产化学与工业, 2013, 33(2):31-36.

    LI Ling, XU Yuzhi, WANG Chunpeng, et al. Properties and microstructure of phenolic foam modified by nitrile butadiene rubber powder[J]. Chemistry and Industry of Forest Products,2013,33(2):31-36(in Chinese).
    [17] CHOE J, KIM M, KIM J, et al. A microwave foaming method for fabricating glass fiber reinforced phenolic foam[J]. Composite Structures,2016,152:239-246. doi: 10.1016/j.compstruct.2016.05.044
    [18] SHEN H B, NUTT S. Mechanical characterization of short fiber reinforced phenolic foam[J]. Composites Part A: Applied Science and Manufacturing,2003,34(9):899-906. doi: 10.1016/S1359-835X(03)00136-2
    [19] ISLAM M S, KOVALCIK A, HASAN M, et al. Natural fiber reinforced polymer composites[J]. International Journal of Polymer Science,2015,2015:813568. doi: 10.1155/2015/813568
    [20] 曹建凡, 白树林, 秦文贞, 等. 碳纤维增强热塑性复合材料的制备与性能研究进展[J]. 复合材料学报, 2023, 40(3):1229-1247.

    CAO Jianlin, BAI Shulin, QIN Wenzhen, et al. Research progress on preparation and properties of carbon fiber reinforced thermoplastic composites[J]. Acta Materiae Compositae Sinica,2023,40(3):1229-1247(in Chinese).
    [21] ZHOU Y, TRABELSI A, EL MANKIBI M. A review on the properties of straw insulation for buildings[J]. Construction and Building Materials,2022,330:127215. doi: 10.1016/j.conbuildmat.2022.127215
    [22] 魏俞涌, 钱少平, 姚文超, 等. 水稻秸秆不同部位剪切性能分析[J]. 农业工程, 2021, 11(8):103-107.

    WEI Yuyong, QIAN Shaoping, YAO Wenchao, et al. Experiment and analysis of shearing property of rice straw[J]. Agricultural Engineering,2021,11(8):103-107(in Chinese).
    [23] XIE H, CUI B, HAO S, et al. Exploring the macroscopic and microscopic characteristics of rice stalk for utilization in bio-composites[J]. Composites Science,2022,230:109728.
    [24] 孙俊威, 蒋晶, 赵娜, 等. 原位成纤复合泡沫材料的研究进展[J]. 复合材料学报, 2023, 40(4):1951-1965.

    SUN Junwei, JIANG Jing, ZHAO Na, et al. Research progress of in-situ fibrous composite foamed material[J]. Acta Materiae Compositae Sinica,2023,40(4):1951-1965(in Chinese).
    [25] 中国国家标准化管理委员会. 泡沫塑料及橡胶表观密度的测定: GB/T 6343—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People's Republic of China. Cellular plastics and rubbers—Determination of apparent density: GB/T 6343—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [26] 中国国家标准化管理委员会. 绝热材料稳态热阻及有关特性的测定—防护热板法: GB/T 10294—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Thermal insulation—determination of steady-state thermal resistance and related properties—Guarded hot plate apparatus: GB/T 10294—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [27] 中国国家标准化管理委员会. 硬质泡沫塑料弯曲性能的测定: GB/T 8812.1—2007[S]. 北京: 中国标准出版社, 2007.

    Standardization Administration of the People's Republic of China. Rigid cellular plastics—Determination of flexural properties: GB/T 8812.1—2007[S]. Beijing: China Standards Press, 2007(in Chinese).
    [28] 中国国家标准化管理委员会. 硬质泡沫塑料压缩性能的测定: GB/T 8813—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Rigid cellular plastics—Determination of compression properties: GB/T 8813—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [29] 中国国家标准化管理委员会. 建筑用绝热制品垂直于表面抗拉强度的测定: GB/T 30804—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People's Republic of China. Thermal insulation products for building applications—Determination of tensile strength perpendicular to faces: GB/T 30804—2014[S]. Beijing: China Standards Press, 2014(in Chinese).
    [30] 中国国家标准化管理委员会. 硬质泡沫塑料燃烧性能实验方法—垂直燃烧法: GB/T 8333—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Test method for flammability of rigid cellular plastic—Virtical burning method: GB/T 8333—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [31] 中国国家标准化管理委员会. 塑料用氧指数法测定燃烧行为: GB/T 2406.2—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People's Republic of China. Plastics—Determination of burning behaviour by oxygen index: GB/T 2406.2—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [32] 中国国家标准化管理委员会. 建筑材料可燃性试验方法: GB/T 8626—2007[S]. 北京: 中国标准出版社, 2007.

    Standardization Administration of the People's Republic of China. Test method of flammability for building materials: GB/T 8626—2007[S]. Beijing: China Standards Press, 2007(in Chinese).
    [33] 孙妮娜, 董文军, 王晓燕, 等. 东北稻区水稻收获秸秆处理方式综合效果研究[J]. 农业机械学报, 2020, 51(4):69-77.

    SUN Nina, DONG Wenjun, WANG Xiaoyan, et al. Comprehensive effect of rice harvesting straw treatment methods in northeast rice region[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(4):69-77(in Chinese).
    [34] INGLESBY M K, GRAY G M, WOOD D F, et al. Surface characterization of untreated and solvent-extracted rice straw[J]. Colloids and Surfaces B: Biointerfaces,2005,43(2):83-94. doi: 10.1016/j.colsurfb.2005.03.014
    [35] JIANG H, ZHANG Y, WANG X. Effect of lipases on the surface properties of wheat straw[J]. Industrial Crops and Products,2009,30(2):304-310. doi: 10.1016/j.indcrop.2009.05.009
    [36] 中国国家标准化管理委员会. 绝热用硬质酚醛泡沫制品(PF): GB/T 20974—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People's Republic of China. Rigid phenolic foam for thermal insulation(PF): GB/T 20974—2014[S]. Beijing: China Standards Press, 2014(in Chinese).
    [37] WANG X, XIA Q, JING S, et al. Strong, hydrostable, and degradable straws based on cellulose-lignin reinforced composites[J]. Small,2021,17(18):2008011. doi: 10.1002/smll.202008011
    [38] CHE J L, HAN M G, CHANG S H. Compression characteristics, energy absorption, and feasibility evaluation of egg-box panels made of long fibre prepreg sheets[J]. Composite Structures,2021,262:113379. doi: 10.1016/j.compstruct.2020.113379
    [39] ŞERBAN D A, WEISSENBORN O, GELLER S, et al. Evaluation of the mechanical and morphological properties of long fibre reinforced polyurethane rigid foams[J]. Polymer Testing,2016,49:121-127. doi: 10.1016/j.polymertesting.2015.11.007
    [40] KNUDSEN J N, JENSEN P A, DAM-JOHANSEN K. Transformation and release to the gas phase of Cl, K, and S during combustion of annual biomass[J]. Energy and Fuels,2004,18(5):1385-1399. doi: 10.1021/ef049944q
    [41] GUO L, ZHAI M, WANG Z, et al. Comprehensive coal quality index for evaluation of coal agglomeration characteristics[J]. Fuel,2018,231:379-386. doi: 10.1016/j.fuel.2018.05.119
    [42] HIDALGO J P, TORERO J L, WELCH S. Fire performance of charring closed-cell polymeric insulation materials: Polyisocyanurate and phenolic foam[J]. Fire and Materials,2018,42(4):358-373. doi: 10.1002/fam.2501
    [43] MA Y, WANG C, CHU F. Effects of fiber surface treatments on the properties of wood fiber-phenolic foam composites[J]. BioResources,2017,12(3):4722-4736.
    [44] 司耀辉, 陈汉平, 王贤华, 等. 农业秸秆燃烧特性及动力学分析[J]. 华中科技大学学报(自然科学版), 2012, 40(1):128-132.

    SI Yaohui, CHEN Hanping, WANG Xianhua, et al. Combustion characteristics and kinetic analysis of agricultural straw[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2012,40(1):128-132(in Chinese).
    [45] KUROKOCHI Y, SATO M. Effect of surface structure, wax and silica on the properties of binderless board made from rice straw[J]. Industrial Crops and Products,2015,77:949-953. doi: 10.1016/j.indcrop.2015.10.007
    [46] SONG W, HE Y, WU Y, et al. Characterization of burning behaviors and particulate matter emissions of crop straws based on a cone calorimeter[J]. Materials,2021,14(12):3407. doi: 10.3390/ma14123407
    [47] 中国国家标准化管理委员会. 建筑材料及制品燃烧性能分级: GB/T 8624—2012[S]. 北京: 中国标准出版社, 2012.

    Standardization Administration of the People's Republic of China. Classification for burning behavior of building materials and products: GB/T 8624—2012[S]. Beijing: China Standards Press, 2012(in Chinese).
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  642
  • HTML全文浏览量:  233
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-09
  • 修回日期:  2022-12-08
  • 录用日期:  2022-12-09
  • 网络出版日期:  2023-01-10
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回