Study on the preparation and properties of rice straw reinforced phenolic foam insulation material
-
摘要:
保温墙板在减小室内温度波动、维持室内温度适宜和减少能耗方面具有重大作用。本文研究亮点是通过水稻秸秆与阻燃性能优异的酚醛树脂(PF)泡沫复合,制备稻秸增强酚醛泡沫保温材料。二者复合不仅可以改进酚醛泡沫本身脆性大、力学强度低的问题,还能够提高稻秸的利用价值,减少农业废弃物燃烧处理对环境造成的污染问题。技术创新点在于将大尺寸非连续的稻秸定向排布在PF泡沫基体内,形成发泡胶-稻秸-发泡胶的夹层结构,制备出力学性能显著提高、保温和阻燃性能与PF泡沫同样优异的稻秸/PF泡沫复合材料。 稻秸/PF泡沫复合材料制备流程 Abstract: By compounding rice straw with phenolic resin (PF) foam, to improve the shortcomings of PF foam itself, such as high brittleness and poor mechanical strength, and to investigate the effects of length (8 cm, 12 cm and 16 cm) and form (cross-cutting straw, slope-cutting straw and grinding straw fiber) of rice straw on the physical properties, mechanical and combustion properties of the composite material. The results show that the inner and outer surfaces of rice straw have an obvious mechanical engagement with PF foam. The bending strength, compressive strength and tensile strength perpendicular to the board surface of rice straw/PF foam composites are better than PF foam. The bending strength of 16 cm long slope-cutting rice straw/PF foam composite reaches 1.18 MPa, which is 195% higher than PF foam. The compressive stress at 10% strain and tensile strength perpendicular to the plate surface of 16 cm long grinding rice straw/PF foam composite are 251.30 kPa and 121.26 kPa, respectively, which are 112.1% and 20.7% higher than PF foam. The vertical combustion and limited oxygen index (LOI) results show that PF foam has better wrapping effect on straw, the thermal stability of the composite is almost the same as that of PF foam, with almost no change in LOI value. The flammability test results of both rice straw/PF foam composites and PF foam meet the requirements of B1 class building materials, which show an excellent fire resistance. To sum up, 8 cm slope-cutting rice straw reinforced PF foam composite has an optimal integrated mechanical property.-
Key words:
- phenolic foam /
- rice straw /
- thermal conductivity /
- mechanical strength /
- combustion properties
-
图 3 复合材料表面 ((a1) PF泡沫; ((b1)~(d1)) 横切、斜切、搓碾稻秸/PF泡沫复合材料)、横截面上的稻秸分布 ((a2) PF泡沫; ((b2)~(d2)) 横切、斜切、搓碾稻秸/PF泡沫复合材料)、PF泡沫对稻秸的渗透情况 (((b3)~(d3)) 横切、斜切、搓碾稻秸)及密度 (e)
Figure 3. Appearance ((a1) PF; ((b1)-(d1)) Cross-cutting, slope-cutting, grinding rice straw/PF foam composite), inner distribution of rice straw in cross-section ((a2) PF; ((b2)-(d2)) Cross-cutting, slope-cutting, grinding rice straw/PF foam composite), the filling of PF foam around the rice straw (((b3)-(d3)) cross-cutting, slope-cutting rice straw, grinding rice straw) and density (e) of straw/PF foam composites
图 4 PF泡沫从稻秸内外表面剥离后,剥离界面的表面形貌:(a) 稻秸外表面;(b) 稻秸内表面;(c) 从秸秆外表面剥离出的PF泡沫;(d) 从秸秆内表面剥离出的PF泡沫
Figure 4. Surface morphologies of the stripping interface after PF foam stripped from the inner and outer surfaces of the rice straw: (a) Outer surface of the rice straw; (b) Inner surface of the rice straw; (c) PF foam stripped from the outer surface of the rice straw; (d) PF foam stripped from the inner surface of the rice straw
表 1 不同稻秸添加量的稻秸/酚醛树脂(PF)泡沫材料的制备及性能
Table 1. Preparation and properties of rice straw/phenolic resin (PF) foam composite under different amounts of rice straw
Foaming resin/g Rice straw/g Distribution of rice straw in composite Foaming resin in the mold overflows Flexural strength/MPa PF foam 60 0 — Almost no overflow 0.39 Rice straw/PF foam composite 60 10 Unevenly distributed after foaming A small amount of foaming
resin overflows0.50 60 20 Not bad orientation of rice straw A small amount of foaming
resin overflows0.56 60 30 Good orientation of rice straw Some foaming resin overflows 0.70 60 40 Poor foam filling performance
between rice strawsA lot of foaming resin overflows 0.41 表 2 稻秸/PF泡沫复合材料极限氧指数(LOI)测试结果
Table 2. Results of limited oxygen index (LOI) test on rice straw/PF foam composites
Samples k1/% k2/% k3/% k4/% k5/% k6/% k'/% Rice straw 25.7 25.5 25.5 25.4 25.2 25.2 25.4 PF 36.6 36.4 36.6 36.5 36.6 36.5 36.5 8 cm/Cross-cutting/PF 36.1 36.0 35.7 35.6 35.4 35.6 35.7 12 cm/Cross-cutting/PF 35.5 35.7 36.5 36.2 36.6 36.4 36.2 16 cm/Cross-cutting/PF 36.3 35.6 36.1 35.7 35.8 35.9 35.9 8 cm/Slope-cutting/PF 36.2 35.4 35.5 35.0 36.1 35.6 35.6 12 cm/Slope-cutting/PF 35.3 35.1 36.4 35.9 34.7 36.1 35.6 16 cm/Slope-cutting/PF 35.6 35.9 36.3 36.3 36.5 36.4 36.2 8 cm/Grinding/PF 36.4 35.6 35.1 35.3 35.1 36.0 35.6 12 cm/Grinding/PF 36.3 35.3 36.3 35.8 35.5 35.2 35.7 16 cm/Grinding/PF 35.0 36.1 36.0 36.1 36.4 36.3 35.9 Notes: ki(i=1, 2...6)—Specimen number of the LOI test; k'—Average of the LOI test results. 表 3 稻秸/PF泡沫复合材料燃烧性能测试结果
Table 3. Results of combustion performance tests on rice straw/PF foam composites
Sample Virtical burning test
(Ignition time: 10 s)Flammability test
(Ignition time: 30 s)Flame height/
cmAfter flame
time/sAfter glow
time/sResidual mass
fraction/wt%Flame
height/mmFlaming
debrisPF 0 0 5.62 91.3 83 0 8 cm/Cross-cutting/PF 0 0 5.63 95.1 91 0 12 cm/Cross-cutting/PF 0 0 9.29 95.3 105 0 16 cm/Cross-cutting/PF 0 0 8.40 94.4 89 0 8 cm/Slope-cutting/PF 0 0 8.51 95.0 93 0 12 cm/Slope-cutting/PF 0 0 5.56 94.7 97 0 16 cm/Slope-cutting/PF 0 0 6.99 95.3 102 0 8 cm/Grinding/PF 0 0 8.86 95.2 108 0 12 cm/Grinding/PF 0 0 7.89 94.7 99 0 16 cm/Grinding/PF 0 0 6.34 94.9 102 0 -
[1] NODEH-FARAHANI D, BENTLEY J N, CRILLEY L R, et al. A boron dipyrromethene (BODIPY) based probe for selective passive sampling of atmospheric nitrous acid (HONO) indoors[J]. Analyst,2021,146(18):5756-5766. doi: 10.1039/D1AN01089A [2] DESCHENES O. Temperature, human health, and adaptation: A review of the empirical literature[J]. Energy Economics,2014,46:606-619. doi: 10.1016/j.eneco.2013.10.013 [3] AL-HOMOUD M S. Performance characteristics and practical applications of common building thermal insulation materials[J]. Building and Environment,2005,40(3):353-366. doi: 10.1016/j.buildenv.2004.05.013 [4] LI S, CUI B, XIE H, et al. Strong cellulose-based light-management film with ultraviolet blocking and near-infrared shielding performance[J]. ACS Applied Materials & Interfaces, 2022, 14(37): 42522-42530. [5] HASSAN T, JAMSHAID H, MISHRA R, et al. Acoustic, mechanical and thermal properties of green composites reinforced with natural fibers waste[J]. Polymers, 2020, 12(3): 654. [6] PILATO L. Phenolic resins: A century of progress[M]. Heidelberg: Springer, 2010: 190. [7] 赵君行. 酚醛泡沫塑料在外墙保温中的应用研究[J]. 江西建材, 2021(1):121,123.ZHAO Junxing. Study on application of phenolic foam in external wall insulation[J]. Jiangxi Building Materials,2021(1):121,123(in Chinese). [8] 葛铁军, 胡晓岐, 王东奇. 对苯二甲醇改性酚醛泡沫的性能研究[J]. 化工新型材料, 2020, 48(8):80-84, 90.GE Tiejun, HU Xiaoqi, WANG Dongqi. Study on property of p-phenylenediethanol modified phenolic foam[J]. New Chemical Materials,2020,48(8):80-84, 90(in Chinese). [9] TANG Q, FANG L, GUO W. Effects of bamboo fiber length and loading on mechanical, thermal and pulverization properties of phenolic foam composites[J]. Journal of Bioresources and Bioproducts,2019,4(1):51-59. doi: 10.21967/jbb.v4i1.184 [10] ZHOU M, SHI H, LI C, et al. Depolymerization and activation of alkali lignin by solid acid-catalyzed phenolation for preparation of lignin-based phenolic foams[J]. Industrial & Engineering Chemistry Research,2020,59(32):14296-14305. [11] MOUGEL C, GARNIER T, CASSAGNAU P, et al. Phenolic foams: A review of mechanical properties, fire resistance and new trends in phenol substitution[J]. Polymer,2019,164:86-117. doi: 10.1016/j.polymer.2018.12.050 [12] XI Z, LI D, FENG Z. Characteristics of polymorphic foam for inhibiting spontaneous coal combustion[J]. Fuel,2017,206:334-341. doi: 10.1016/j.fuel.2017.06.022 [13] YU Y, WANG Y, XU P, et al. Preparation and characterization of phenolic foam modified with bio-oil[J]. Materials,2018,11(11):2228. doi: 10.3390/ma11112228 [14] SARIKA P R, NANCARROW P, KHANSAHEB A, et al. Progress in bio-based phenolic foams: Synthesis, properties, and applications[J]. ChemBioEng Reviews,2021,8(6):612-632. doi: 10.1002/cben.202100017 [15] DEL SAZ-OROZCO B, VIRGINIA ALONSO M, OLIET M, et al. Effects of formulation variables on density, compressive mechanical properties and morphology of wood flour-reinforced phenolic foams[J]. Composites Part B: Engineering,2014,56:546-552. doi: 10.1016/j.compositesb.2013.08.078 [16] 李玲, 许玉芝, 王春鹏, 等. 丁腈橡胶粉改性酚醛树脂泡沫的性能与微观结构研究[J]. 林产化学与工业, 2013, 33(2):31-36.LI Ling, XU Yuzhi, WANG Chunpeng, et al. Properties and microstructure of phenolic foam modified by nitrile butadiene rubber powder[J]. Chemistry and Industry of Forest Products,2013,33(2):31-36(in Chinese). [17] CHOE J, KIM M, KIM J, et al. A microwave foaming method for fabricating glass fiber reinforced phenolic foam[J]. Composite Structures,2016,152:239-246. doi: 10.1016/j.compstruct.2016.05.044 [18] SHEN H B, NUTT S. Mechanical characterization of short fiber reinforced phenolic foam[J]. Composites Part A: Applied Science and Manufacturing,2003,34(9):899-906. doi: 10.1016/S1359-835X(03)00136-2 [19] ISLAM M S, KOVALCIK A, HASAN M, et al. Natural fiber reinforced polymer composites[J]. International Journal of Polymer Science,2015,2015:813568. doi: 10.1155/2015/813568 [20] 曹建凡, 白树林, 秦文贞, 等. 碳纤维增强热塑性复合材料的制备与性能研究进展[J]. 复合材料学报, 2023, 40(3):1229-1247.CAO Jianlin, BAI Shulin, QIN Wenzhen, et al. Research progress on preparation and properties of carbon fiber reinforced thermoplastic composites[J]. Acta Materiae Compositae Sinica,2023,40(3):1229-1247(in Chinese). [21] ZHOU Y, TRABELSI A, EL MANKIBI M. A review on the properties of straw insulation for buildings[J]. Construction and Building Materials,2022,330:127215. doi: 10.1016/j.conbuildmat.2022.127215 [22] 魏俞涌, 钱少平, 姚文超, 等. 水稻秸秆不同部位剪切性能分析[J]. 农业工程, 2021, 11(8):103-107.WEI Yuyong, QIAN Shaoping, YAO Wenchao, et al. Experiment and analysis of shearing property of rice straw[J]. Agricultural Engineering,2021,11(8):103-107(in Chinese). [23] XIE H, CUI B, HAO S, et al. Exploring the macroscopic and microscopic characteristics of rice stalk for utilization in bio-composites[J]. Composites Science,2022,230:109728. [24] 孙俊威, 蒋晶, 赵娜, 等. 原位成纤复合泡沫材料的研究进展[J]. 复合材料学报, 2023, 40(4):1951-1965.SUN Junwei, JIANG Jing, ZHAO Na, et al. Research progress of in-situ fibrous composite foamed material[J]. Acta Materiae Compositae Sinica,2023,40(4):1951-1965(in Chinese). [25] 中国国家标准化管理委员会. 泡沫塑料及橡胶表观密度的测定: GB/T 6343—2009[S]. 北京: 中国标准出版社, 2009.Standardization Administration of the People's Republic of China. Cellular plastics and rubbers—Determination of apparent density: GB/T 6343—2009[S]. Beijing: China Standards Press, 2009(in Chinese). [26] 中国国家标准化管理委员会. 绝热材料稳态热阻及有关特性的测定—防护热板法: GB/T 10294—2008[S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People's Republic of China. Thermal insulation—determination of steady-state thermal resistance and related properties—Guarded hot plate apparatus: GB/T 10294—2008[S]. Beijing: China Standards Press, 2008(in Chinese). [27] 中国国家标准化管理委员会. 硬质泡沫塑料弯曲性能的测定: GB/T 8812.1—2007[S]. 北京: 中国标准出版社, 2007.Standardization Administration of the People's Republic of China. Rigid cellular plastics—Determination of flexural properties: GB/T 8812.1—2007[S]. Beijing: China Standards Press, 2007(in Chinese). [28] 中国国家标准化管理委员会. 硬质泡沫塑料压缩性能的测定: GB/T 8813—2008[S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People's Republic of China. Rigid cellular plastics—Determination of compression properties: GB/T 8813—2008[S]. Beijing: China Standards Press, 2008(in Chinese). [29] 中国国家标准化管理委员会. 建筑用绝热制品垂直于表面抗拉强度的测定: GB/T 30804—2014[S]. 北京: 中国标准出版社, 2014.Standardization Administration of the People's Republic of China. Thermal insulation products for building applications—Determination of tensile strength perpendicular to faces: GB/T 30804—2014[S]. Beijing: China Standards Press, 2014(in Chinese). [30] 中国国家标准化管理委员会. 硬质泡沫塑料燃烧性能实验方法—垂直燃烧法: GB/T 8333—2008[S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People's Republic of China. Test method for flammability of rigid cellular plastic—Virtical burning method: GB/T 8333—2008[S]. Beijing: China Standards Press, 2008(in Chinese). [31] 中国国家标准化管理委员会. 塑料用氧指数法测定燃烧行为: GB/T 2406.2—2009[S]. 北京: 中国标准出版社, 2009.Standardization Administration of the People's Republic of China. Plastics—Determination of burning behaviour by oxygen index: GB/T 2406.2—2009[S]. Beijing: China Standards Press, 2009(in Chinese). [32] 中国国家标准化管理委员会. 建筑材料可燃性试验方法: GB/T 8626—2007[S]. 北京: 中国标准出版社, 2007.Standardization Administration of the People's Republic of China. Test method of flammability for building materials: GB/T 8626—2007[S]. Beijing: China Standards Press, 2007(in Chinese). [33] 孙妮娜, 董文军, 王晓燕, 等. 东北稻区水稻收获秸秆处理方式综合效果研究[J]. 农业机械学报, 2020, 51(4):69-77.SUN Nina, DONG Wenjun, WANG Xiaoyan, et al. Comprehensive effect of rice harvesting straw treatment methods in northeast rice region[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(4):69-77(in Chinese). [34] INGLESBY M K, GRAY G M, WOOD D F, et al. Surface characterization of untreated and solvent-extracted rice straw[J]. Colloids and Surfaces B: Biointerfaces,2005,43(2):83-94. doi: 10.1016/j.colsurfb.2005.03.014 [35] JIANG H, ZHANG Y, WANG X. Effect of lipases on the surface properties of wheat straw[J]. Industrial Crops and Products,2009,30(2):304-310. doi: 10.1016/j.indcrop.2009.05.009 [36] 中国国家标准化管理委员会. 绝热用硬质酚醛泡沫制品(PF): GB/T 20974—2014[S]. 北京: 中国标准出版社, 2014.Standardization Administration of the People's Republic of China. Rigid phenolic foam for thermal insulation(PF): GB/T 20974—2014[S]. Beijing: China Standards Press, 2014(in Chinese). [37] WANG X, XIA Q, JING S, et al. Strong, hydrostable, and degradable straws based on cellulose-lignin reinforced composites[J]. Small,2021,17(18):2008011. doi: 10.1002/smll.202008011 [38] CHE J L, HAN M G, CHANG S H. Compression characteristics, energy absorption, and feasibility evaluation of egg-box panels made of long fibre prepreg sheets[J]. Composite Structures,2021,262:113379. doi: 10.1016/j.compstruct.2020.113379 [39] ŞERBAN D A, WEISSENBORN O, GELLER S, et al. Evaluation of the mechanical and morphological properties of long fibre reinforced polyurethane rigid foams[J]. Polymer Testing,2016,49:121-127. doi: 10.1016/j.polymertesting.2015.11.007 [40] KNUDSEN J N, JENSEN P A, DAM-JOHANSEN K. Transformation and release to the gas phase of Cl, K, and S during combustion of annual biomass[J]. Energy and Fuels,2004,18(5):1385-1399. doi: 10.1021/ef049944q [41] GUO L, ZHAI M, WANG Z, et al. Comprehensive coal quality index for evaluation of coal agglomeration characteristics[J]. Fuel,2018,231:379-386. doi: 10.1016/j.fuel.2018.05.119 [42] HIDALGO J P, TORERO J L, WELCH S. Fire performance of charring closed-cell polymeric insulation materials: Polyisocyanurate and phenolic foam[J]. Fire and Materials,2018,42(4):358-373. doi: 10.1002/fam.2501 [43] MA Y, WANG C, CHU F. Effects of fiber surface treatments on the properties of wood fiber-phenolic foam composites[J]. BioResources,2017,12(3):4722-4736. [44] 司耀辉, 陈汉平, 王贤华, 等. 农业秸秆燃烧特性及动力学分析[J]. 华中科技大学学报(自然科学版), 2012, 40(1):128-132.SI Yaohui, CHEN Hanping, WANG Xianhua, et al. Combustion characteristics and kinetic analysis of agricultural straw[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2012,40(1):128-132(in Chinese). [45] KUROKOCHI Y, SATO M. Effect of surface structure, wax and silica on the properties of binderless board made from rice straw[J]. Industrial Crops and Products,2015,77:949-953. doi: 10.1016/j.indcrop.2015.10.007 [46] SONG W, HE Y, WU Y, et al. Characterization of burning behaviors and particulate matter emissions of crop straws based on a cone calorimeter[J]. Materials,2021,14(12):3407. doi: 10.3390/ma14123407 [47] 中国国家标准化管理委员会. 建筑材料及制品燃烧性能分级: GB/T 8624—2012[S]. 北京: 中国标准出版社, 2012.Standardization Administration of the People's Republic of China. Classification for burning behavior of building materials and products: GB/T 8624—2012[S]. Beijing: China Standards Press, 2012(in Chinese). -