留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维织物袋的内爆响应与抗爆性能

解江 高斌元 蒋逸伦 潘汉源 冯振宇

解江, 高斌元, 蒋逸伦, 等. 纤维织物袋的内爆响应与抗爆性能[J]. 复合材料学报, 2023, 40(4): 2441-2450. doi: 10.13801/j.cnki.fhclxb.20220630.003
引用本文: 解江, 高斌元, 蒋逸伦, 等. 纤维织物袋的内爆响应与抗爆性能[J]. 复合材料学报, 2023, 40(4): 2441-2450. doi: 10.13801/j.cnki.fhclxb.20220630.003
XIE Jiang, GAO Binyuan, JIANG Yilun, et al. Implosion response and anti-explosion performance of fabric bags[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2441-2450. doi: 10.13801/j.cnki.fhclxb.20220630.003
Citation: XIE Jiang, GAO Binyuan, JIANG Yilun, et al. Implosion response and anti-explosion performance of fabric bags[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2441-2450. doi: 10.13801/j.cnki.fhclxb.20220630.003

纤维织物袋的内爆响应与抗爆性能

doi: 10.13801/j.cnki.fhclxb.20220630.003
详细信息
    通讯作者:

    解江,博士,副研究员,硕士生导师,研究方向为复合材料冲击动力学 E-mail: xiejiang5@126.com

  • 中图分类号: O383

Implosion response and anti-explosion performance of fabric bags

  • 摘要: 针对小型简易爆炸装置,设计了芳纶和超高分子量聚乙烯(UHMWPE)纤维织物防爆袋,开展了织物袋内爆试验,同时建立了织物袋内爆数值分析模型。从外部超压和临界厚度两个角度对比了两种材料织物袋的抗爆能力,分析了初始内爆距离和织物袋厚度对织物袋抗爆性能的影响。结果表明:内爆载荷下织物袋的主要失效模式为中心区域破孔和封口拉链失效。在20~100 g药量范围内,织物袋的临界厚度与药量近似呈线性增长关系。同一药量下,芳纶织物袋的临界厚度明显大于UHMWPE织物袋,在不考虑爆炸火球对织物烧蚀的影响时,UHMWPE织物袋具有更好的抗爆效果。厚度相同时,芳纶织物袋外部的超压峰值更小,表明芳纶织物袋的超压衰减能力更强。随着织物袋初始内爆距离的增大,织物袋的临界厚度减小。织物袋外部一定范围内存在高于人体能够承受的超压,以30 g TNT、3 mm厚芳纶织物袋为例,在距织物袋中心665 mm处的超压为34.2 kPa,超过鼓膜损伤阈值。

     

  • 图  1  织物袋实物图

    Figure  1.  Fabric bag

    图  2  三硝基甲苯(TNT)放置方式

    Figure  2.  Placement of tri-nitro-toluene (TNT)

    图  3  试验系统

    Figure  3.  Experimental setup

    图  4  20 g TNT作用下,1.2 mm厚芳纶织物袋的动态响应过程

    Figure  4.  Dynamic response process of 1.2 mm aramid fabric bag under the condition of 20 g TNT

    图  5  20 g TNT作用下,2.2 mm厚UHMWPE织物袋的动态响应过程

    Figure  5.  Dynamic response process of 2.2 mm UHMWPE fabric bag under the condition of 20 g TNT

    图  6  织物袋外部3个测点超压随时间的变化曲线

    Figure  6.  Variation curves of overpressure with time at three measuring points outside the fabric bag

    图  7  织物袋有限元模型

    Figure  7.  Finite element model of fabric bag

    图  8  两种织物的应力-应变曲线

    Figure  8.  Stress-strain curves of the two fabrics

    图  9  20 g TNT作用下试验和数值模拟得到的1.2 mm厚芳纶织物袋的动态响应过程对比

    Figure  9.  Comparison of dynamic response process of 1.2 mm aramid fabric bag by experiment and simulation under the condition of 20 g TNT

    图  10  20 g TNT作用下,试验和数值模拟得到的1.2 mm厚芳纶织物袋的失效模式

    Figure  10.  Failure modes of 1.2 mm aramid fabric bag obtained by experiment and simulation under the condition of 20 g TNT

    图  11  织物袋正上方距炸药0.5 m处压力

    Figure  11.  Pressure above fabric bag 0.5 m from explosive

    图  12  压力峰值时刻两种织物袋的形状

    Figure  12.  Shapes of two fabric bags at peak pressure

    图  13  织物袋临界厚度随药量的变化规律

    Figure  13.  Variation of critical thickness of fabric bags with TNT charge

    图  14  不同初始内爆距离下织物袋在不同时刻的形状

    Figure  14.  Shapes of the fabric bags with different initial implosion distances at different time

    图  15  织物袋临界厚度随初始内爆距离的变化规律

    Figure  15.  Variation of critical thickness of fabric bags with initial implosion distances

    图  16  30 g TNT作用下,3 mm厚芳纶织物袋外部不同距离处冲击波超压随时间的变化曲线

    Figure  16.  Variation curves of shock wave overpressure with time at different positions outside the 3 mm aramid fabric bag under the condition of 30 g TNT

    图  17  不同厚度芳纶织物袋外部测点超压随时间变化规律

    Figure  17.  Variation of external measuring point overpressure of different thickness aramid fabric bags with time

    图  18  不同厚度芳纶织物袋外部测点超压峰值对比

    Figure  18.  Comparison of overpressure peaks at measuring points of aramid fabric bags with different thickness

    表  1  各织物的主要物理参数

    Table  1.   Main physical parameters of fabrics

    MaterialAramidUHMWPE
    GradeF-268ZTZ 24
    Yarn fineness/tex166126±10
    Yarn body density/(g·cm−3)1.440.97
    Yarn breaking elongation/%≥3.23-3.5
    Yarn tensile modulus/GPa≥125105-110
    Fabric thickness/mm0.30.55
    Weave count/(yarns·(10 cm)−1)65×6587×87
    Areal density/(g·m−2)210-220235-245
    Note: UHMWPE—Ultra-high molecular weight polyethylene.
    下载: 导出CSV

    表  2  TNT参数

    Table  2.   Parameters of TNT

    ParameterValue
    Density/(kg·cm−3)1.63×103
    Detonation velocity/(m·s−1)6930
    Detonation pressure/GPa21
    A/GPa374
    B/GPa3.74
    R14.15
    R21.4
    ω0.35
    E0/(MJ·m−3)7×103
    Notes: A, B, R1, R2, ω—Constants characterizing TNT properties; E0—Detonation energy per unit volume.
    下载: 导出CSV

    表  3  空气参数

    Table  3.   Parameters of air

    ParameterValue
    Density/(kg·m−3)1.29
    C40.4
    C50.4
    C1, C2, C3, C60
    E0/(MJ·m−3)0.25
    Notes: C0-C6—Polynomial equation coefficients.
    下载: 导出CSV

    表  4  不同药量下织物袋的临界厚度

    Table  4.   Critical thickness of fabric bags at different charges

    Charge/gCritical thickness/mm
    Aramid fiberUHMWPE
    201.51.1
    302.81.8
    605.73.4
    909.06.2
    1009.66.9
    下载: 导出CSV

    表  5  30 g TNT作用下,不同初始内爆距离的织物袋的临界厚度

    Table  5.   Critical thickness of fabric bags with different initial implosion distances under the condition of 30 g TNT

    Size/mmInitial implosion distance/mmCharge/gCritical thickness/mm
    AramidUHMWPE
    900×800 50302.81.9
    751.20.7
    1000.80.4
    1250.50.2
    下载: 导出CSV

    表  6  30 g TNT作用下3 mm厚芳纶织物袋外部不同位置处的超压峰值

    Table  6.   Overpressure peaks at different positions outside the 3 mm aramid fabric bag under the condition of 30 g TNT

    Distance from measuring
    point to explosive/mm
    Charge/gOverpressure
    peak/kPa
    40030123.9
    500 60.7
    600 37.7
    665 34.2
    700 32.8
    800 28.6
    下载: 导出CSV
  • [1] Federal Aviation Administration. Least risk bomb location: FAA. AC 25.795-6[S]. Washington: Federal Aviation Administration, 2008.
    [2] FALLAH A S, MICALLEF K, LANGDON G S, et al. Dynamic response of Dyneema HB26 plates to localised blast loading[J]. International Journal of Impact Engineering,2014,73(11):91-100.
    [3] GARGANO A, PINGKARAWAT K, BLACKLOCK M. Comparative assessment of the explosive blast performance of carbon and glass fibre-polymer composites used in naval ship structures[J]. Composite Structures,2017,171(1):306-316.
    [4] ZHANG Y, YAN D J, NIAN X Z, et al. Numerical analysis of rigid and flexible reflection of air shock wave[J]. Applied Mechanics & Materials,2014,638-640:2010-2014.
    [5] ZHANG B, NIAN X Z, JIN F, et al. Failure analyses of flexible ultra-high molecular weight polyethylene (UHMWPE) fiber reinforced anti-blast wall under explosion[J]. Composite Structures,2018,184:759-774. doi: 10.1016/j.compstruct.2017.10.037
    [6] 赵敏, 赵睿昕, 沈永明, 等. CFR嵌片对超高分子质量聚乙烯多层复合织物防爆性能的影响[J]. 纺织学报, 2014, 35(3):37-40.

    ZHAO Min, ZHAO Ruixin, SHEN Yongming, et al. The effect of CFR inserts on the explosion-proof properties of ultra-high molecular weight polyethylene multilayer composite fabrics[J]. Journal of Textile Research,2014,35(3):37-40(in Chinese).
    [7] 解江, 姜超, 高斌元, 等. 高性能纤维织物抗爆性能试验研究[J]. 应用力学学报, 2022, 39(1):35-43.

    XIE Jiang, JIANG Chao, GAO Binyuan, et al. Experimental study on anti-explosion performance of high-performance fiber fabrics[J]. Chinese Journal of Applied Mechanics,2022,39(1):35-43(in Chinese).
    [8] 冯振宇, 姜超, 高斌元, 等. 芳纶纤维平纹织布在爆炸载荷下的动态响应与失效行为的数值分析[J]. 应用数学和力学, 2021, 42(11):1113-1125.

    FENG Zhenyu, JIANG Chao, GAO Binyuan, et al. Numerical analysis of dynamic response and failure behavior of aramid fiber plain weave under blast load[J]. Applied Mathematics and Mechanics,2021,42(11):1113-1125(in Chinese).
    [9] 解江, 高斌元, 甄婷婷, 等. 爆炸载荷下机织物的动态响应与失效行为[J]. 复合材料学报, 2022, 39(10): 4949-4960.

    XIE Jiang, GAO Binyuan, ZHEN Tingting, et al. Dynamic response and failure behaviors of woven fabrics under blast load[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4949-4960(in Chinese).
    [10] CHUN S, KAPOOR H, KAPANIA R, et al. Nonlinear fluid-structure interaction in a flexible shelter under blast loading[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Virginia, 2005.
    [11] MARKERT F, THOMMESEN J. Blast worthy textile-based luggage containers for aviation safety[J]. Safety and Security Analysis,2011,40:213557.
    [12] ZANGANI D, AMBROSETTI S, BOZZOLO A, et al. Textile-based luggage containers for onboard blast protection[J]. Sae International Journal of Aerospace,2011,4(2):690-698. doi: 10.4271/2011-01-2517
    [13] GIOVANELLE M L. Advanced technologies for bombproof cargo containers and blast containment units for the retrofitting of passenger airplanes[J]. International Journal of Aviation Systems, Operations and Training, 2015, 2(1): 33-47.
    [14] POLAK J, REDLICH G, WITCZAK E. The reaction of cylinder fibrous cover to explosion of charge with fragments[J]. Central European Journal of Energetic Materials,2009,6(2):137-148.
    [15] POLAK J, ROMEK R, WIŚNIEWSKI A. Lightweight covers for attenuating the explosion of the charges and the methodology of their protective performance assay[J]. Problemy Techniki Uzbrojenia,2008,37(107):15-24.
    [16] ZHU W, HUANG G Y, LIU H, et al. Experimental and numerical investigation of a hollow cylindrical water based barrier against internal blast induced fragment loading[J]. International Journal of Impact Engineering,2020,138:103503. doi: 10.1016/j.ijimpeng.2020.103503
    [17] MASI F, MARIA M P, VANNUCCI P. Blast actions in aircrafts: An integrated methodology for designing protection devices[J]. Engineering Structures,2018,175:895-911. doi: 10.1016/j.engstruct.2018.08.082
    [18] 蔡军锋, 易建政. 新型危险品防爆运输箱设计及抗爆试验研究[J]. 包装工程, 2012, 33(5):6-8, 55.

    CAI Junfeng, YI Jianzheng. Design and anti-explosion test of new explosion-proof transport case for dangerous article[J]. Packaging Engineering,2012,33(5):6-8, 55(in Chinese).
    [19] 蔡军锋, 傅孝忠, 易建政. 超高分子量聚乙烯-聚氨酯泡沫复合材料的抗爆实验与数值模拟[J]. 高分子材料科学与工程, 2013, 29(11):79-83. doi: 10.16865/j.cnki.1000-7555.2013.11.019

    CAI Junfeng, FU Xiaozhong, YI Jianzheng. Anti-explosion experiment and numerical simulation of ultra-high molecular weight polyethylene-polyurethane foam composites[J]. Polymer Materials Science and Engineering,2013,29(11):79-83(in Chinese). doi: 10.16865/j.cnki.1000-7555.2013.11.019
    [20] 何泽侃. 芳纶纤维布缠绕增强软壁机匣包容性研究[D]. 杭州: 浙江大学, 2018.

    HE Zekan. Research on the containment of soft wall casing wrapped with aramid fiber fabric[D]. Hangzhou: Zhejiang University, 2018(in Chinese).
    [21] 孙艳馥, 王欣. 爆炸冲击波对人体损伤与防护分析[J]. 火炸药学报, 2008, 31(4):50-53. doi: 10.3969/j.issn.1007-7812.2008.04.013

    SUN Yanfu, WANG Xin. Analysis of human body injury and protection by explosion shock wave[J]. Journal of Explosives,2008,31(4):50-53(in Chinese). doi: 10.3969/j.issn.1007-7812.2008.04.013
  • 加载中
图(18) / 表(6)
计量
  • 文章访问数:  877
  • HTML全文浏览量:  473
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-26
  • 修回日期:  2022-06-12
  • 录用日期:  2022-06-18
  • 网络出版日期:  2022-07-01
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回