留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碱式硫酸镁晶须复合SiO2纳米粒子制备高/低黏性超疏水涂层

吴鹏 乃学瑛 刘鑫 董亚萍 李武

吴鹏, 乃学瑛, 刘鑫, 等. 碱式硫酸镁晶须复合SiO2纳米粒子制备高/低黏性超疏水涂层[J]. 复合材料学报, 2022, 40(0): 1-8
引用本文: 吴鹏, 乃学瑛, 刘鑫, 等. 碱式硫酸镁晶须复合SiO2纳米粒子制备高/低黏性超疏水涂层[J]. 复合材料学报, 2022, 40(0): 1-8
Peng WU, Xueying NAI, Xin LIU, Yaping DONG, Wu LI. Fabrication of high and low adhesive superhydrophobic coatings with magnesium oxysulfate whiskers and SiO2 nanoparticles[J]. Acta Materiae Compositae Sinica.
Citation: Peng WU, Xueying NAI, Xin LIU, Yaping DONG, Wu LI. Fabrication of high and low adhesive superhydrophobic coatings with magnesium oxysulfate whiskers and SiO2 nanoparticles[J]. Acta Materiae Compositae Sinica.

碱式硫酸镁晶须复合SiO2纳米粒子制备高/低黏性超疏水涂层

基金项目: 青海省科技厅项目 (2019-ZJ-7029)
详细信息
    通讯作者:

    乃学瑛,博士,副研究员,硕士生导师,研究方向为低维材料的制备及应用 E-mail: naixy@isl.ac.cn

  • 中图分类号: TB332,O647.5

Fabrication of high and low adhesive superhydrophobic coatings with magnesium oxysulfate whiskers and SiO2 nanoparticles

  • 摘要: 超疏水材料因性能独特,应用前景广阔而被广泛关注。本文采用碱式硫酸镁晶须(MOSWs)与二氧化硅纳米粒子制备超疏水涂层,首先对MOSWs及50 nm、500 nm SiO2进行表面改性以降低表面能,然后基于混料实验将三者按比例混合以构造表面粗糙度,以接触角、滚动角及平均粗糙度Ra为响应变量建立回归模型,分析了混合分量的形貌、尺寸与混合比例对响应变量的影响,并探讨了超疏水涂层微观结构对水滴黏附性的影响以及粗糙度与超疏水性能之间的关系。结果表明:MOSWs复合SiO2纳米粒子可制备具有不同黏附性的超疏水涂层,单独使用MOSWs可制备高黏附性超疏水涂层,其接触角达152.59°,涂层水平倒置水滴不滴落;而MOSWs与50 nm SiO2以相同质量分数混合,可制备低黏附性超疏水涂层,其接触角达163.25°,滚动角可趋近0°。所制备涂层的平均粗糙度Ra值位于5~10 μm之间时,接触角较大,滚动角较小,超疏水性能较佳。

     

  • 图  1  混料分量的表面改性及超疏水涂层制备示意图

    Figure  1.  Schematic diagram of the surface modification of mixture components and the fabrication of superhydrophobic coating

    图  2  不同配方制备涂层的接触角与滚动角混合等值线图

    Figure  2.  Mixed contour plots of contact angle and sliding angle of coatings with different preparation formulations

    图  3  MOSWs单组分超疏水涂层的接触角及水滴黏附性

    Figure  3.  Contact angle and water droplet adhesion of the superhydrophobic coating fabricated by MOSWs single component

    图  4  MOSWs混合50 nm SiO2制备超疏水涂层的接触角及滚动角

    Figure  4.  Contact angle and sliding angle of the superhydrophobic coating prepared by mixing MOSWs and 50 nm SiO2

    图  5  混料实验中涂层接触角与滚动角的重叠等值线图

    Figure  5.  Overlaid contour plot of contact angle and sliding of coatings in the mixture design

    图  6  水滴与涂层表面的接触线示意图

    Figure  6.  Schematic diagram of the contact line between the water droplet and the coating surface

    图  7  超疏水涂层的SEM:(a)由MOSWs单组分制备;(b)由MOSWs (70%)与50 nm SiO2(30%)的混合组分制备

    Figure  7.  SEM of the superhydrophobic coatings fabricated by (a) MOSWs and (b) mixing MOSWs (70%) and 50 nm SiO2(30%)

    图  8  不同配方制备涂层的平均粗糙度的混合等值线图

    Figure  8.  Mixed contour plot of average roughness of coatings prepared with different formulations

    图  9  超疏水涂层的三维轮廓图像:(a) MOSWs单组分制备;(b) MOSWs (70%)与50 nm SiO2(30%)的混合组分制备

    Figure  9.  Surface profile of superhydrophobic coatings prepared by (a) MOSWs and (b) mixing MOSWs (70%) and 50 nm SiO2(30%)

    图  10  混料实验中涂层平均粗糙度与接触角、滚动角的等值线图

    Figure  10.  Contour plot of contact angle, sliding angle and average roughness of coatings in the mixture design

    表  1  混料实验设计表及三个响应变量的测试结果

    Table  1.   Mixture design table and test results of three response variables

    Standard orderMix proportion of
    A
    (50 nm SiO2)/wt%
    Mix proportion of
    B
    (500 nm SiO2)/wt%
    Mix proportion of
    C(MOSWs)/wt%
    Contact angle/(°)Sliding angle/(°)Average roughness Ra/μm
    100.1670.1670.667159.513.812.36
    90.1670.6670.167156.815.410.92
    80.6670.1670.167159.740.86.04
    50.5000.0000.500163.250.17.40
    70.3330.3330.333160.533.38.94
    20.0001.0000.000158.450.122.70
    11.0000.0000.000158.100.12.29
    30.0000.0001.000152.59180.014.60
    60.0000.5000.500159.5513.215.45
    40.5000.5000.000158.591.45.18
    100.1670.1670.667159.513.812.36
    下载: 导出CSV
  • [1] LI S H, HUANG J Y, CHEN Z, et al. A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications[J]. Journal of Materials Chemistry A,2017,5(1):31-55. doi: 10.1039/C6TA07984A
    [2] 赖跃坤, 陈忠, 林昌健. 超疏水表面黏附性的研究进展[J]. 中国科学:化学, 2011, 41(4):609-628. doi: 10.1360/032011-11

    LAI Y K, CHEN Z, LIN C. A review on the recent progress in superhydrophobic surfaces with special adhesions[J]. SCIENTIA SINICA Chimica,2011,41(4):609-628(in Chinese). doi: 10.1360/032011-11
    [3] JIN M H, FENG X J, FENG L, et al. Superhydrophobic aligned polystyrene nanotube films with high adhesive force[J]. Advanced Materials,2005,17(16):1977-1981. doi: 10.1002/adma.200401726
    [4] LI X P, SUN Y L, XU Y Y, et al. UV-Resistant and Thermally Stable Superhydrophobic CeO2 Nanotubes with High Water Adhesion[J]. Small,2018,14(27):1801040. doi: 10.1002/smll.201801040
    [5] WANG M K, ZI Y, ZHU J, et al. Construction of superhydrophobic PDMS@MOF@Cu mesh for reduced drag, anti-fouling and self-cleaning towards marine vehicle applications[J]. Chemical Engineering Journal,2021,417:129265. doi: 10.1016/j.cej.2021.129265
    [6] 刘刚, 欧宝立, 赵欣欣等. 共价功能化石墨烯超疏水防腐复合涂层材料的制备[J]. 复合材料学报, 2021, 38(10):3236-3245.

    LIU G, OU B L, ZHAO X X, et al. Preparation of covalently functionalized graphene superhydrophobic anticorrosive composite coating materials[J]. Acta Materiae Compositae Sinica,2021,38(10):3236-3245(in Chinese).
    [7] WAN Y L, YAN C D, YU H D, et al. Anti-Icing Performance of Superhydrophobic Surface with Square-Ring Structure Prepared by Nanosecond Laser[J]. Advanced Engineering Materials,2021:2100190.
    [8] AHUJA D, DHIMAN S, RATTAN G, et al. Superhydrophobic modification of cellulose sponge fabricated from discarded jute bags for oil water separation[J]. Journal of Environmental Chemical Engineering,2021,9(2):105063. doi: 10.1016/j.jece.2021.105063
    [9] WANG J P, WU Y L, ZHANG D G, et al. Preparation of superhydrophobic flexible tubes with water and blood repellency based on template method[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2020,587:124331.
    [10] VANITHAKUMARI S C, ATHULYA V, GEORGE R P, et al. Fabrication of superhydrophobic and self cleaning PVA-silica fiber coating on 304L SS surfaces by electrospinning[J]. Journal of Applied Polymer Science,2021,138(13):50118. doi: 10.1002/app.50118
    [11] WANG S Q, XUE Y P, BAN C L, et al. Fabrication of robust tungsten carbide particles reinforced Co-Ni superhydrophobic composite coating by electrochemical deposition[J]. Surface & Coatings Technology,2020,385:125390.
    [12] WANG Y T, PENG H K, LI T T, et al. Lightweight, flexible and superhydrophobic conductive composite films based on layer-by-layer self-assembly for high-performance electromagnetic interference shielding[J]. Composites Part a-Applied Science and Manufacturing,2021,141:106119.
    [13] LIN D M, ZENG X R, LI H Q, et al. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction[J]. Journal of Colloid and Interface Science,2019,533:198-206. doi: 10.1016/j.jcis.2018.08.060
    [14] ZHANG C J, LIANG F H, ZHANG W, et al. Constructing Mechanochemical Durable and Self-Healing Superhydrophobic Surfaces[J]. Acs Omega,2020,5(2):986-994. doi: 10.1021/acsomega.9b03912
    [15] XUE C H, ZHAO L L, GUO X J, et al. Mechanically durable superhydrophobic surfaces by binding polystyene nanoparticles on fibers with aluminum phosphate followed by hydrophobization[J]. Chemical Engineering Journal,2020,396:125231. doi: 10.1016/j.cej.2020.125231
    [16] VERHO T, BOWER C, ANDREW P, et al. Mechanically Durable Superhydrophobic Surfaces[J]. Advanced Materials,2011,23(5):673-678. doi: 10.1002/adma.201003129
    [17] 李战胜. 基于纳米二氧化硅的防冰疏水涂层的制备及性能研究[J]. 电镀与涂饰, 2020, 39(4):201-205.

    LI Z S. Preparation of anti-icing hydrophobic coating based on nano-silica and study on its properties[J]. Electroplating & Finishing,2020,39(4):201-205(in Chinese).
    [18] JIANG L, ZHAO Y, ZHAI J. A lotus-leaf-like superhydrophobic surface: A porous microsphere/nanofiber composite film prepared by electrohydrodynamics[J]. Angewandte Chemie-International Edition,2004,43(33):4338-4341. doi: 10.1002/anie.200460333
    [19] WANG T R, ZHAO Y Y. Fabrication of thermally and mechanically stable superhydrophobic coatings for cellulose-based substrates with natural and edible ingredients for food applications[J]. Food Hydrocolloids,2021,120:106877. doi: 10.1016/j.foodhyd.2021.106877
    [20] GONG G M, WU J T, LIU J G, et al. Bio-inspired adhesive superhydrophobic polyimide mat with high thermal stability[J]. Journal of Materials Chemistry,2012,22(17):8257-8262. doi: 10.1039/c2jm16503a
    [21] LI Y, ZHU X T, ZHOU X Y, et al. A facile way to fabricate a superamphiphobic surface[J]. Applied Physics a-Materials Science & Processing,2014,115(3):765-770.
    [22] WANG S L, ZHANG J, YU X Q, et al. Condensed dewdrops self-ejecting on sprayable superhydrophobic CNT/SiO2 composite coating[J]. Rsc Advances,2017,7(44):27574-27577. doi: 10.1039/C7RA04102K
    [23] 陆文卿, 王国建. 水性防火阻尼双功能涂料的制备[J]. 涂料工业, 2018, 48(6):24-30. doi: 10.12020/j.issn.0253-4312.2018.6.24

    LU W Q, WANG G J. Preparation of waterborne fire retardant and damping dual functional coatings[J]. Paint & Coatings Industry,2018,48(6):24-30(in Chinese). doi: 10.12020/j.issn.0253-4312.2018.6.24
    [24] DANG L, NAI X Y, LIU X, et al. Mechanical and flame retardant properties of isotactic polypropylene/magnesium oxysulfate whisker composite[J]. Journal of Thermoplastic Composite Materials,2018,31(4):514-534. doi: 10.1177/0892705717713073
    [25] ZHENG F, DENG H T, ZHAO X J, et al. Fluorinated hyperbranched polyurethane electrospun nanofibrous membrane: Fluorine-enriching surface and superhydrophobic state with high adhesion to water[J]. Journal of Colloid and Interface Science,2014,421:49-55. doi: 10.1016/j.jcis.2014.01.009
  • 加载中
计量
  • 文章访问数:  117
  • HTML全文浏览量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-21
  • 录用日期:  2022-02-19
  • 修回日期:  2022-02-04
  • 网络出版日期:  2022-03-19

目录

    /

    返回文章
    返回