留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于真空辅助树脂传递模塑成型不同纤维形态竹纤维复合材料性能研究

施江靖 陈红 张文福 吴婕妤 徐祥

施江靖, 陈红, 张文福, 等. 基于真空辅助树脂传递模塑成型不同纤维形态竹纤维复合材料性能研究[J]. 复合材料学报, 2022, 39(6): 2930-2940. doi: 10.13801/j.cnki.fhclxb.20210726.001
引用本文: 施江靖, 陈红, 张文福, 等. 基于真空辅助树脂传递模塑成型不同纤维形态竹纤维复合材料性能研究[J]. 复合材料学报, 2022, 39(6): 2930-2940. doi: 10.13801/j.cnki.fhclxb.20210726.001
SHI Jiangjing, CHEN Hong, ZHANG Wenfu, et al. Study on properties of bamboo fiber composites with different fiber morphologies based on vacuum-assisted resin transfer molding[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2930-2940. doi: 10.13801/j.cnki.fhclxb.20210726.001
Citation: SHI Jiangjing, CHEN Hong, ZHANG Wenfu, et al. Study on properties of bamboo fiber composites with different fiber morphologies based on vacuum-assisted resin transfer molding[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2930-2940. doi: 10.13801/j.cnki.fhclxb.20210726.001

基于真空辅助树脂传递模塑成型不同纤维形态竹纤维复合材料性能研究

doi: 10.13801/j.cnki.fhclxb.20210726.001
基金项目: 浙江省省属科研院所专项(2020F1065-3);浙江省省院合作林业科技项目(2020SY09)
详细信息
    通讯作者:

    张文福,博士,助理研究员,研究方向为竹纤维及其复合材料 E-mail:zhangwenfu542697@163.com

  • 中图分类号: TB332

Study on properties of bamboo fiber composites with different fiber morphologies based on vacuum-assisted resin transfer molding

  • 摘要: 为探索不同形态竹纤维(BF)对真空辅助树脂传递模塑成型(VARTM)过程中环氧树脂(EP)浸渍纤维效果及BF/EP复合材料性能的影响,采用经机械碾压2次、3次、4次得到3种不同形态的BF(BF-2、BF-3和BF-4),通过湿法层铺工艺将BF制作成竹纤维毡(BFM),再利用VARTM制备出纤维含量为45wt%的复合材料BF-2/EP、BF-3/EP和BF-4/EP。采用ESEM、超景深显微镜、力学试验机、TG、DMA和Micro-CT对BF、BFM和BF/EP复合材料性能进行表征。研究结果表明:随纤维长度减小、纤维分离度增加,导致湿法层铺成型的BFM蓬松度降低,树脂注射难度增大,BFM-4在树脂注射时会发生纤维堆积,BF-3/EP复合材料吸水率最低。BF-2的长度较长、分离度低,虽保持了BF束自身结构与性能,但是与树脂界面结合性能差,长度与分离度适中的BF-3制备的复合材料力学性能最佳,弯曲强度、弹性模量、剪切强度和冲击韧性分别为97.90 MPa、7.2 GPa、17.01 MPa和8.11 kJ/m2。BF加速了BF/EP复合材料的热解,BF-4/EP复合材料因BF-4中半纤维素含量少,热解温度有所提高。BF能够提升EP的刚性,BF-3与树脂界面结合最佳,孔隙体积占比仅为0.04%,BF-3/EP复合材料储能模量最大值高达5198 MPa。使用VARTM制备BF/EP复合材料时,BF尺寸与分离度是影响纤维与树脂界面结合性能和BF/EP复合材料性能的关键因素。

     

  • 图  1  竹纤维毡(BFM)湿法层铺 (a) 与真空辅助树脂传递模塑成型(VARTM) (b)的工艺流程

    Figure  1.  Process of preparing bamboo fiber mat (BFM) by wet layering (a) and vacuum-assisted resin transfer molding (VARTM) (b)

    图  2  不同BF的宏观形貌 (a) 与微观形貌(b)

    Figure  2.  Macro-morphologies (a) and micro-morphologies (b) of different BF

    图  3  绿竹薄壁组织与纤维化学成分

    Figure  3.  Chemical components of parenchyma and fiber of Dendrocalamopsis oldhami

    图  4  绿竹薄壁组织与纤维TG-DTG曲线

    Figure  4.  TG-DTG curves of parenchyma and fiber of Dendrocalamopsis oldhami

    图  5  不同形态BF的TG (a) 与DTG (b)曲线

    Figure  5.  TG (a) and DTG (b) curves of BF with different morphologies

    1—Dehydration; 2—Warm-up phase; 3—Severe pyrolysis; 4—Slow pyrolysis

    图  6  不同纤维形态BFM形貌超景深显微图

    Figure  6.  Ultra-depth micrographs of BFMwith different fiber morphologies

    图  7  不同纤维形态BFM吸水性

    Figure  7.  Water absorption of BFM with different fiber morphologies

    图  8  纤维形态对BF/环氧树脂(EP)复合材料吸水性的影响

    Figure  8.  Influence of fiber morphology on the water absorption of BF/epoxy resin (EP) composites

    图  9  BF/EP复合材料截面形貌超景深显微图

    Figure  9.  Ultra-depth micrographs of section morphologies of BF/EP composites

    图  10  纤维形态对BF/EP复合材料的弯曲强度/模量 (a)、剪切强度 (b)、冲击韧性 (c) 的影响

    Figure  10.  Effect of fiber morphology on the flexural strength/modulus (a), shear strength (b) and impact toughness (c) of BF/EP composites

    图  11  BF/EP复合材料弯曲性能测试断裂宏观 (a) 和微观 ((b)、(c)) 形貌SEM图像

    Figure  11.  SEM images of fracture macroscopic (a) and microscopic ((b), (c)) morphologies of BF/EP composites in flexural properties test

    图  12  环氧树脂酸酐体系(EP/MTHPA) (a) 与不同纤维形态BF/EP复合材料 ((b)、(c)) 的TG-DTG曲线

    Figure  12.  TG-DTG curves for EP anhydride system (EP/MTHPA) (a) and BF/EP composites of different fiber morphologies ((b), (c))

    1—Dehydration; 2—Severe pyrolysis; 3—Slow pyrolysis

    图  13  不同纤维形态BF/EP复合材料的储能模量 (a)、损耗模量 (b)、损耗因子 (c) 曲线

    Figure  13.  Storage modulus (a), loss modulus (b), loss factor (c) curves for BF/EP composites with different fiber morphologies

    图  14  BF与EP界面结合Micro-CT三维模型

    Figure  14.  3D micro-CT models of the interfacial bonding between BF and EP

    表  1  不同纤维形态竹纤维(BF)的尺寸

    Table  1.   Size of bamboo fiber (BF) with different morphologies

    MaterialLength/cmDiameter/mmAspect ratio
    AverageRangeAverageRange
    BF-2 23.97 (7.04) 11.20-41.00 0.50 (0.24) 0.19-1.14 479
    BF-3 3.43 (0.75) 1.94-5.37 0.37 (0.21) 0.10-1.17 93
    BF-4 2.54 (1.03) 1.28-6.02 0.25 (0.12) 0.13-0.55 102
    Note: Standard deviation in brackets.
    下载: 导出CSV

    表  2  不同纤维形态BF/EP复合材料密度

    Table  2.   Densities of BF/EP composites prepared with different fiber morphologies

    BF/EP compositeEPBF-2/EPBF-3/EPBF-4/EP
    Density/(g·cm−3)1.2101.2451.2591.251
    下载: 导出CSV
  • [1] ZHANG J, CHEVALI V S, WANG H, et al. Current status of carbon fibre and carbon fibre composites recycling[J]. Composites Part B: Engineering,2020,193:108053. doi: 10.1016/j.compositesb.2020.108053
    [2] MORAMPUDI P, NAMALA K K, GAJJELA Y K, et al. Review on glass fiber reinforced polymer composites[J]. Mater-ials Today: Proceedings,2021,43:314-319. doi: 10.1016/j.matpr.2020.11.669
    [3] ZHANG Zhongsen, CAI Shenming, LI Yan, et al. High performances of plant fiber reinforced composites—A new insight from hierarchical microstructures[J]. Composites Science and Technology,2020,194:108151. doi: 10.1016/j.compscitech.2020.108151
    [4] LIU D, SONG J, ANDERSON D P, et al. Bamboo fiber and its reinforced composites: Structure and properties[J]. Cellulose,2012,19(5):1449-1480. doi: 10.1007/s10570-012-9741-1
    [5] DEPUYDT D E, SWEYERS N, APPELS L, et al. Bamboo fibres sourced from three global locations: A microstructural, mechanical and chemical composition study[J]. Jour-nal of Reinforced Plastics and Composites,2019,38(9):397-412. doi: 10.1177/0731684419828532
    [6] ZAKIKHANI P, ZAHARI R, SULTAN M, et al. Extraction and preparation of bamboo fibre-reinforced composites[J]. Materials & Design,2014,63:820-828.
    [7] 李岩, 于涛, 沈轶鸥. 植物纤维增强复合材料[M]. 北京: 科学出版社, 2021.

    LI Yan, YU Tao, SHEN Yiou. Plant fiber reinforced compo-sites[M]. Beijing: Science Press, 2021(in Chinese).
    [8] XIA C, SHI S Q, CAI L, et al. Property enhancement of kenaf fiber composites by means of vacuum-assisted resin transfer molding (VARTM)[J]. Holzforschung,2015,69(3):307-312. doi: 10.1515/hf-2014-0054
    [9] KIM H, OKUBO K, FUJII T, et al. Influence of fiber extraction and surface modification on mechanical properties of green composites with bamboo fiber[J]. Journal of Adhesion Science & Technology,2013,27(12):1348-1358.
    [10] WANG D, BAI T, CHENG W, et al. Surface modification of bamboo fibers to enhance the interfacial adhesion of epoxy resin-based composites prepared by resin transfer molding[J]. Polymers,2019,11(12):2107.
    [11] ISHIKAWA H, TAKAGI H, NAKAGAITO A N, et al. Effect of surface treatments on the mechanical properties of natural fiber textile composites made by VARTM method[J]. Composite Interfaces,2014,21(4):329-336. doi: 10.1080/15685543.2013.876322
    [12] 徐灿, 陆继倾, 白天, 等. 纳米SiO2改性竹纤维/乙烯基树脂复合材料界面相容性[J]. 复合材料学报, 2021, 38(9):2776-2786.

    XU Can, LU Jiqing, BAI Tian, et al. Study on interfacial compatibility of nano-SiO2 modified bamboo fiber/vinyl ester resin composites[J]. Acta Materiae Compositae Sinica,2021,38(9):2776-2786(in Chinese).
    [13] 范豪. VARTM中树脂充模过程的数值模拟与实验研究[D]. 哈尔滨: 东北林业大学, 2017.

    FAN Hao. Numerical simulation and experimental study on resin filling process in VARTM[D]. Haerbing: Northeast Forestry University, 2017(in Chinese).
    [14] 薛昊. 竹纤维/环氧树脂复合材料的RTM成型工艺及界面改性研究[D]. 哈尔滨: 东北林业大学, 2020.

    XUE Hao. VARTM process and interfacial modification of bamboo fiber/epoxy composite[D]. Harbing: Northeast Forestry University, 2020(in Chinese).
    [15] CHEN H, CHENG H T, WANG G, et al. Tensile properties of bamboo in different sizes[J]. Journal of Wood Science,2015,61(6):552-561. doi: 10.1007/s10086-015-1511-x
    [16] 潘明珠. 麦秸纤维/聚丙烯复合材料制造工艺与性能研究[D]. 南京: 南京林业大学, 2008.

    PAN Mingzhu. Preparation and properties of wheat straw fiber/polypropylene composites[D]. Nanjing: Nanjing Forestry University, 2008(in Chinese).
    [17] 王春红, 刘胜凯, 任子龙, 等. 表面改性对竹纤维与聚丙烯纤维混杂毡平铺复合材料湿热老化影响[J]. 塑料, 2016, 45(4):50-54.

    WANG Chunhong, LIU Shengkai, REN Zilong, et al. Effect of surface modification on hygrothermal ageing behavior of bamboo fiber and polypropylene fiber hybrid compo-site[J]. Plastics,2016,45(4):50-54(in Chinese).
    [18] 郭卫昂. 针刺工艺中机织基布纱线损伤问题的研究[D].上海: 东华大学, 2013.

    GUO Weiang. The analysis of yarn damage on base cloth in the needle-punching process[D]. Shanghai: Donghua University, 2013(in Chinese).
    [19] 施江靖, 陈红, 张文福, 等. 纤维含量对VARTM制备竹纤维/环氧树脂复合材料性能影响[J]. 复合材料学报, 2022, 39(3): 1249-1258.

    SHI J J, CHEN H, ZHANG W F, et al. Effect of fiber content on the properties of bamboo fiber/epoxy resin composites prepared by VARTM [J]. Acta Materiae Compositae Sinica, 2020, 39(3): 1249-1258(in Chinese).
    [20] SLUITER A, HAMES B, RUIZ R O, et al. Determination of structural carbohydrates and lignin in biomass[J]. Laboratory Analytical Procedure,2008,1617(1):1-16.
    [21] 中国国家标准化管理委员会. 纤维增强塑料密度和相对密度试验方法: GB/T 1463—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Test methods for density and relative of fiber reinforced plastics: GB/T 1463—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [22] 中国国家标准化管理委员会. 木材吸水性测试方法: GB/T 1934.1—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Method for determination of water absorption of wood: GB/T 1934.1—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [23] 中国国家标准化管理委员会. 纤维增强塑料吸水性试验方法: GB/T 1462—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Test methods for water absorption of fiber reinforced plastics: GB/T 1462—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [24] 中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Fiber-reinforced plastic composites—Determination of flexural poperties: GB/T 1449—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [25] ASTM. Standard test method for short beam strength of polymer matrix composite materials and their laminates: ASTM D2344/ D2344M—16[S]. West Conshohocken: ASTM International, 2016.
    [26] 中国国家标准化管理委员会. 纤维增强塑料简支梁式冲击韧性试验方法: GB/T 1451—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Fiber-reinforced plastic composites—Determination of charpy impact properties: GB/T 1451—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [27] ROCKY B P, THOMPSON A J. Production of natural bamboo fibers-1: Experimental approaches to different processes and analyses[J]. The Journal of the Textile Institute,2018,109(10):1381-1391. doi: 10.1080/00405000.2018.1482639
    [28] 董庆, 张书平, 张理, 等. 竹材热解动力学特性分析[J]. 过程工程学报, 2015, 15(1):89-93.

    DONG Qing, ZHANG Shuping, ZHANG Li, et al. Study on pyrolysis kinetics of bamboo[J]. The Chinese Journal of Process Engineering,2015,15(1):89-93(in Chinese).
    [29] GUPTA A. Synthesis, chemical resistance, and water absorption of bamboo fiber reinforced epoxy composites[J]. Polymer Composites,2016,37(1):141-145. doi: 10.1002/pc.23164
    [30] KHAN Z, YOUSIF B F, ISLAM M D. Fracture behaviour of bamboo fiber reinforced epoxy composites[J]. Compo-sites Part B: Engineering,2017,116:186-199. doi: 10.1016/j.compositesb.2017.02.015
    [31] 陈祥宝. 先进复合材料技术导论[M]. 北京: 航空工业出版社, 2017.

    CHEN Xiangbao. Introduction of advanced composite technology[M]. Beijing: Aviation Industry Press, 2017(in Chinese).
    [32] 付盼, 谭欣, 肖来辉, 等. 高性能桐油基酸酐类环氧固化剂研究[J]. 热固性树脂, 2021, 36(2):22-30.

    FU Pan, TAN Xin, XIAO Laihui, et al. Study on high-performance tung oil-based anhydride epoxy curing agent[J]. Thermosetting Resin,2021,36(2):22-30(in Chinese).
    [33] SONG K, REN X, ZHANG L. Bamboo fiber-polymer composites: Overview of fabrications, mechanical characterizations and applications[M]. Cham: Springer International Publishing, 2017.
    [34] WANG C, WANG G, CHENG H, et al. CaCO3 in situ treated bamboo pulp fiber reinforced composites obtained by vacuum-assisted resin infusion[J]. Wood Science & Technology,2017,51(3):571-584.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  1170
  • HTML全文浏览量:  432
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-01
  • 修回日期:  2021-07-01
  • 录用日期:  2021-07-07
  • 网络出版日期:  2021-07-26
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回