留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于可充电水性锌离子电池的先进Ti3C2@ε-MnO2电极

黄兰香 罗旭峰

黄兰香, 罗旭峰. 用于可充电水性锌离子电池的先进Ti3C2@ε-MnO2电极[J]. 复合材料学报, 2022, 39(10): 1-11 doi: 10.13801/j.cnki.fhclxb.20211123.002
引用本文: 黄兰香, 罗旭峰. 用于可充电水性锌离子电池的先进Ti3C2@ε-MnO2电极[J]. 复合材料学报, 2022, 39(10): 1-11 doi: 10.13801/j.cnki.fhclxb.20211123.002
Lanxiang HUANG, Xufeng LUO. Advanced Ti3C2@ε-MnO2 Cathode as Rechargeable Aqueous Zinc-ion Batteries[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 1-11. doi: 10.13801/j.cnki.fhclxb.20211123.002
Citation: Lanxiang HUANG, Xufeng LUO. Advanced Ti3C2@ε-MnO2 Cathode as Rechargeable Aqueous Zinc-ion Batteries[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 1-11. doi: 10.13801/j.cnki.fhclxb.20211123.002

用于可充电水性锌离子电池的先进Ti3C2@ε-MnO2电极

doi: 10.13801/j.cnki.fhclxb.20211123.002
基金项目: 乐山师范学院高层次人才引进科研启动项目(205190161);乐山市科技局重点项目(20GZD031)
详细信息
    通讯作者:

    黄兰香,博士,讲师,研究方向为新能源材料与器件 E-mail: 120678486@qq.com

  • 中图分类号: TB34

Advanced Ti3C2@ε-MnO2 Cathode as Rechargeable Aqueous Zinc-ion Batteries

  • 摘要: 可充电水性锌-氧化锰(Zn-MnOx)电池具有成本低、安全性高、易于安装等特点,成为太阳能及风能储能装置的最佳选择。由于MnOx导电性欠佳,导致电池循环性能较差,为解决此问题,本文采用导电性优异、具有丰富化学终端(Tx,如=O、—F、—OH)的二维层状过渡金属碳化物( MXene) Ti3C2Tx材料作为MnOx颗粒的良好载体。基于化学终端的电负性,Mn2+能够与其产生强静电吸引,从而嵌入Ti3C2Tx MXene材料层间并吸附在其表面,使生成的Mn3O4颗粒牢牢地锚定在Ti3C2Tx MXene上,形成了Ti3C2@Mn3O4复合材料。当作为水性锌离子电池的正极材料时,Ti3C2@Mn3O4在第1次充电过程中,完全转化为Ti3C2@ε-MnO2。由于Ti3C2Tx MXene材料优异的导电性及层状结构,使Ti3C2@ε-MnO2电极展现出了优异的动力学和电化学性能,在0.2 C(1 C=308 mA·h·g−1)倍率下放电时,比容量高达440 mA·h·g−1,能量密度为607 W·h·kg−1,在1 C倍率下循环150次后,容量从270 mA·h·g−1增长至480 mA·h·g−1。优异的电池性能,简单的材料制备方法再加上低成本、高安全性及易于组装的特性,使可充电水性Zn-MnOx电池在大规模储能装置上的应用成为可能。

     

  • 图  1  Ti3AlC2、Ti3C2Tx MXene、Mn3O4、Ti3C2@Mn3O4的XRD图谱((a)、(b));Ti3C2@Mn3O4 (c)和Mn3O4 (d)的BET曲线;Ti3C2@Mn3O4中Ti2p (e)、C1s (f)、Mn2s (g)、O1s (h)的XPS图谱

    Figure  1.  XRD patterns of Ti3AlC2, Ti3C2Tx MXene, Mn3O4, Ti3C2@Mn3O4 ((a), (b)); BET curves of Ti3C2@Mn3O4 (c) and Mn3O4 (d); XPS curves of Ti2p (e), C1s (f), Mn3s (g) and O1s (h) in Ti3C2@Mn3O4

    图  2  Ti3AlC2 MAX (a)、Ti3C2Tx MXene (b)的SEM图像;Ti3C2@Mn3O4的TEM ((c)~(e))和 HRTEM图像(f);(g) Mn、O、Ti和C的EDS图谱

    Figure  2.  SEM images of Ti3AlC2 MAX (a), Ti3C2Tx MXene (b); TEM images ((c)-(e)) and HRTEM image (f) of Ti3C2@Mn3O4; (g) Corresponding elemental mappings of Mn, O, Ti and C

    图  3  Ti3C2@Mn3O4的电化学性能:(a) 0.2 C(1 C=308 mA·h·g−1)倍率下的充放电曲线;(b) 0.1 mV·s−1扫速下的循环伏安(CV)曲线;((c)、(d))倍率性能及不同倍率下的充放电曲线;((e)、(f)) 1 C倍率下的循环性能及不同循环次数的充放电曲线

    Figure  3.  Electrochemical performance of Ti3C2@Mn3O4: (a) Galvanostatic discharge/charge curves at 0.2 C; (b) Cyclic voltammetry curves at 0.1 mV·s−1; ((c), (d)) Rate performance and corresponding charge/discharge curves at different ratios; ((e), (f)) Cycling performance at 1 C and corresponding charge/discharge curves at different cycles

    图  4  (a) Ti3C2@Mn3O4电极经过不同循环次数后的XRD图谱;Ti3C2@Mn3O4电极充电至1.9 V的SEM微观形貌图:(b)在0.2 C倍率下经过第1次充电后;(c)在0.2 C倍率下循环20次后再在1 C倍率下循环3次;(d)继续在1 C倍率下循环150次

    Figure  4.  (a) XRD patterns of Ti3C2@Mn3O4 cathode after different cycles; SEM images of Ti3C2@Mn3O4 cathode recharged to 1.9 V: (b) After 1st charge at 0.2 C; (c) After 20 cycles at 0.2 C and 3 cycles at 1 C; (d) 150 cycles at 1 C

    图  5  (a) Ti3C2@Mn3O4电极在不同扫速下的CV曲线;(b)不同峰位lg(i)和lg(υ)的拟合曲线;(c) Ti3C2@Mn3O4和Mn3O4电极的恒流间歇滴定(GITT)曲线及相应的离子扩散系数D

    Figure  5.  (a) CV curves of Ti3C2@Mn3O4 cathode at different scan rates; (b) lg(i) and lg(υ) plots at specific peak currents; (c) Galvanostatic intermittent titration technique curves and the corresponding ion diffusion coefficients D of Ti3C2@Mn3O4 and Mn3O4 cathode at discharge state

    图  6  (a) Ti3C2@Mn3O4电极在0.2 C倍率下循环20次后放电至0.8 V的XRD图谱;(b) Ti3C2@Mn3O4电极在0.2 C倍率下循环20次后完全放电至0.8 V和充电至1.9 V的Mn3p XPS图谱

    Figure  6.  (a) XRD pattern of Ti3C2@Mn3O4 cathode after fully discharged to 0.8 V at 0.2 C after 20 cycles; (b) XPS spectrums of Mn3p for Ti3C2@Mn3O4 cathode fully discharged to 0.8 V and recharged to 1.9 V after 20 cycles at 0.2 C

  • [1] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials,2010,22(3):587-603. doi: 10.1021/cm901452z
    [2] POSADA J O G, RENNIE A J R, VILLAR S P, et al. Aqueous batteries as grid scale energy storage solutions[J]. Renewable & Sustainable Energy Reviews,2017,68(2):1174-1182. doi: 10.1016/j.rser.2016.02.024
    [3] PARKER J F, CHERVIN C N, PALA I R, et al. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion[J]. Science,2017,356(6336):415-418. doi: 10.1126/science.aak9991
    [4] ALFARUQI M H, MATHEW V, SONG J, et al. Electrochemical zinc intercalation in lithium vanadium oxide: A high-capacity zinc-ion battery cathode[J]. Chemistry of Materials,2017,29(4):1684-1694. doi: 10.1021/acs.chemmater.6b05092
    [5] PAN H L, SHAO Y Y, YAN P F, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions[J]. Nature Energy,2016,1(5):16039-16046. doi: 10.1038/nenergy.2016.39
    [6] ZHANG N, CHENG F, LIU J, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities[J]. Nature Communications,2017,8(1):405-414. doi: 10.1038/s41467-017-00467-x
    [7] HUANG J, WANG Z, HOU M, et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery[J]. Nature Communications,2018,9(1):2906-2914. doi: 10.1038/s41467-018-04949-4
    [8] GAO X, WU H, LI W, et al. H+-insertion boosted α-MnO2 for an aqueous Zn-ion battery[J]. Small,2020,16(5):1905842-1905852. doi: 10.1002/smll.201905842
    [9] CHEN C, SHI M, ZHAO Y, et al. Al-intercalated MnO2 cathode with reversible phase transition for aqueous Zn-ion batteries[J]. Chemical Engineering Journal,2021,422(1):130375-130394. doi: 10.1016/j.cej.2021.130375
    [10] LIU W, ZHANG X, HUANG Y, et al. β-MnO2 with proton conversion mechanism in rechargeable zinc ion battery[J]. Journal of Energy Chemistry,2021,56(1):365-373. doi: 10.1016/j.jechem.2020.07.027
    [11] LI L, HOANG T K A, ZHI J, et al. Functioning mechanism of the secondary aqueous Zn-β-MnO2 battery[J]. ACS Applied Materials & Interfaces,2020,12(11):12834-12846. doi: 10.1021/acsami.9b22758
    [12] ALFARUQI M H, MATHEW V, GIM J, et al. Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system[J]. Chemistry of Materials,2015,27(10):3609-3620. doi: 10.1021/cm504717p
    [13] ALFARUQI M H, GIM J, KIM S, et al. A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications[J]. Electrochemistry Communications,2015,60(1):121-125. doi: 10.1016/j.elecom.2015.08.019
    [14] YUAN C, ZANG Y, PAN Y, et al. Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery[J]. Electrochimica Acta,2014,116(2):404-412. doi: 10.1016/j.electacta.2013.11.090
    [15] ZHANG M, WU W, LUO J, et al. A high-energy-density aqueous zinc-manganese battery with a La–Ca co-doped ε-MnO2 cathode[J]. Journal of Materials Chemistry A,2020,8(1):11642-11648. doi: 10.1039/D0TA03706K
    [16] HUANG L, LUO X, CHEN C, et al. A high specifc capacity aqueous zinc-manganese battery with a ε-MnO2 cathode[J]. Ionics,2021,27(9):3933-3941. doi: 10.1007/s11581-021-04160-4
    [17] ZHOU Z, WANG L, LIANG J, et al. Two-dimensional hierarchical Mn2O3@graphene as high rate and ultrastable cathode for aqueous zinc-ion batteries[J]. Journal of Materials Chemistry C,2021,9(1):1326-1332. doi: 10.1039/D0TC04984K
    [18] MAO M, WU X, HU Y, et al. Charge storage mechanism of MOF-derived Mn2O3 as high performance cathode of aqueous zinc-ion batteries[J]. Journal of Energy Chemistry,2021,52(1):277-283. doi: 10.1016/j.jechem.2020.04.061
    [19] LIU N, WU X, YIN Y, et al. Constructing the efficient ion diffusion pathway by introducing oxygen defects in Mn2O3 for high-performance aqueous zinc-ion batteries[J]. ACS Applied Materials &  Interfaces,2020,12(25):28199-28205. doi: 10.1021/acsami.0c05968
    [20] DHIMAN A, IVEY D G. Electrodeposited manganese oxide on carbon paper for zinc-ion battery cathodes[J]. Batteries & Supercaps,2020,3(3):293-305. doi: 10.1002/batt.201900150
    [21] TAN Q, LI X, ZHANG B, et al. Valence engineering via in situ carbon reduction on octahedron sites Mn3O4 for ultra-long cycle life aqueous Zn-ion battery[J]. Advanced Energy Materials,2020,10(38):2001050-2001060. doi: 10.1002/aenm.202001050
    [22] CHEN H, ZHOU W, ZHU D, et al. Porous cube-like Mn3O4@C as an advanced cathode for low-cost neutral zinc-ion battery[J]. Journal of Alloys and Compounds,2020,813(1):151812-151818. doi: 10.1016/j.jallcom.2019.151812
    [23] LONG J, YANG Z, YANG F, et al. Electrospun core-shell Mn3O4/carbon fibers as high-performance cathode materials for aqueous zinc-ion batteries[J]. Electrochimica Acta,2020,344(1):136155-136162. doi: 10.1016/j.electacta.2020.136155
    [24] ANASORI B, LUKATSKAYA M R, GOROTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Review Materials,2017,2(2):16098-16112. doi: 10.1038/natrevmats.2016.98
    [25] KAMYSBAYEV V, FILATOV A S, HU H, et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes[J]. Science,2020,369(6506):979-983. doi: 10.1126/science.aba8311
    [26] LI M, LU J, LUO K, et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes[J]. Journal of American Chemical Society,2019,141(11):4730-4737. doi: 10.1021/jacs.9b00574
    [27] BI S, WU Y, CAO A, et al. Free-standing three-dimensional carbon nanotubes/ amorphous MnO2 cathodes for aqueous zinc-ion batteries with superior rate performance[J]. Materials Today Energy,2020,18(1):100548-100571. doi: 10.1016/j.mtener.2020.100548
    [28] TONG H, LI T, LIU J, et al. Fabrication of the oxygen vacancy amorphous MnO2/carbon nanotube as cathode for advanced aqueous zinc-ion batteries[J]. Energy Technology,2021,9(2):2000769-2000775. doi: 10.1002/ente.202000769
    [29] CHEN X, LIA W, ZENG Z, et al. Engineering stable Zn-MnO2 batteries by synergistic stabilization between the carbon nanofiber core and birnessite-MnO2 nanosheets shell[J]. Chemical Engineering Journal,2021,405(1):126969-126981. doi: 10.1016/j.cej.2020.126969
    [30] WEI C, TAO Y, AN Y, et al. Recent advances of emerging 2D MXene for stable and sendrite-free metal anodes[J]. Advanced Functional Materials,2020,30(45):2004613-2004643. doi: 10.1002/adfm.202004613
    [31] ZHU X, CAO Z, WANG W, et al. Superior-performance aqueous zinc-ion batteries based on the in situ growth of MnO2 nanosheets on V2CTX MXene[J]. ACS Nano,2021,15(2):2971-2983. doi: 10.1021/acsnano.0c09205
    [32] WANG L, CAO X, XU L, et al. Transformed akhtenskite MnO2 from Mn3O4 as cathode for a rechargeable aqueous zinc ion battery[J]. ACS Sustainable Chemistry & Engineering,2018,6(12):16055-16063. doi: 10.1021/acssuschemeng.8b02502
    [33] SUN W, WANG F, HOU S, et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion[J]. Journal of the American Chemical Society,2017,139(29):9775-9778. doi: 10.1021/jacs.7b04471
    [34] ZHAO Q, CHEN X, WANG Z, et al. Unravelling H+/Zn2+ synergistic intercalation in a novel phase of manganese oxide for high-performance aqueous rechargeable battery[J]. Small,2019,15(47):1904545-1904565. doi: 10.1002/smll.201904545
    [35] CHEN W, LI G, PEI A , et al. A manganese-hydrogen battery with potential for grid-scale energy storage[J]. Nature Energy,2018,3(5):428-435. doi: 10.1038/s41560-018-0147-7
    [36] CHAO D, ZHOU W, YE C, et al. An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage[J]. Angewandte Chemie International Edition,2019,58(23):7823-7828. doi: 10.1002/anie.201904174
    [37] LIU M, ZHAO Q, LIU H, et al. Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery[J]. Nano Energy,2019,64(1):103942-103951. doi: 10.1016/j.nanoen.2019.103942
  • 加载中
图(6)
计量
  • 文章访问数:  168
  • HTML全文浏览量:  145
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-17
  • 录用日期:  2021-11-13
  • 修回日期:  2021-11-06
  • 网络出版日期:  2021-11-24
  • 刊出日期:  2022-10-15

目录

    /

    返回文章
    返回