留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

螺旋缠绕挤压肋FRP筋与混凝土间的黏结性能

董恒磊 李东风 王代玉

董恒磊, 李东风, 王代玉. 螺旋缠绕挤压肋FRP筋与混凝土间的黏结性能[J]. 复合材料学报, 2022, 40(0): 1-12
引用本文: 董恒磊, 李东风, 王代玉. 螺旋缠绕挤压肋FRP筋与混凝土间的黏结性能[J]. 复合材料学报, 2022, 40(0): 1-12
Henglei DONG, Dongfeng LI, Daiyu WANG. Bond behavior between helically and tightly wound FRP bars and concrete[J]. Acta Materiae Compositae Sinica.
Citation: Henglei DONG, Dongfeng LI, Daiyu WANG. Bond behavior between helically and tightly wound FRP bars and concrete[J]. Acta Materiae Compositae Sinica.

螺旋缠绕挤压肋FRP筋与混凝土间的黏结性能

基金项目: 国家自然科学基金面上项目(51878224)
详细信息
    通讯作者:

    董恒磊,博士,博士后,研究方向为FRP在土木工程中的应用 E-mail: hengleidong@foxmail.com

  • 中图分类号: TB332

Bond behavior between helically and tightly wound FRP bars and concrete

  • 摘要: 纤维增强树脂复合材料(fiber-reinforced polymer,FRP)筋的黏结性能是影响FRP筋混凝土构件力学性能的关键性因素,而目前有关带肋FRP筋表面处理工艺、几何特征等因素对黏结性能影响的研究还不足,当前主要设计规范也缺乏此方面的规定。本文以螺旋缠绕挤压肋FRP筋(简称螺旋肋FRP筋)为研究对象,通过搜集大量黏结性能试验数据,分析各主要研究变量对黏结损伤模式和黏结强度的影响规律,重点关注筋表面几何特征造成的影响,明确了螺旋肋FRP筋的黏结机制;结果表明增大混凝土强度使黏结破坏的薄弱区域逐渐从筋与混凝土间咬合层的界面1(混凝土损伤为主)转移到界面2(纤维树脂损伤为主),同时黏结强度也增大,并且混凝土肋宽比CLR越大,增加混凝土强度对黏结强度的提升越明显;增大相对肋高hrd和混凝土肋宽比CLR导致筋与混凝土间咬合层的损伤程度加大,二者的机械咬合作用增强,黏结强度也相应增加;采用多元非线性回归的方式提出了适用于螺旋肋FRP筋的黏结强度计算公式,其预测结果与试验吻合较好,预测精度远高于目前的主流设计规范,究其根本原因在于本文所提公式准确考虑了FRP筋表面几何特征对黏结强度的影响规律。

     

  • 图  1  螺旋缠绕挤压肋纤维增强树脂复合材料(FRP)筋的几何特征

    Figure  1.  Geometrical features of helically and tightly wound fiber-reinforced polymer (FRP) bar

    sr —Rib spacing; wr—FRP bar rib width; wc—Concrete rib width; hr—Rib height

    图  2  螺旋肋FRP筋与混凝土的黏结机制

    Figure  2.  Bond mechanism of helically wound FRP bars in concrete

    图  3  混凝土抗压强度和FRP筋表面几何特征对黏结破坏模式的影响

    Figure  3.  Effect of concrete compressive strength and surface geometrical features of FRP bars on the bond failure

    图  4  混凝土抗压强度对FRP筋黏结强度的影响

    Figure  4.  Effect of concrete compressive strength on bond strength of FRP bars

    图  5  FRP筋表面几何特征对黏结强度的影响

    Figure  5.  Effect of surface geometrical features on bond strength of FRP bars

    图  6  FRP筋直径和黏结长度对破坏模式的影响

    Figure  6.  Effect of FRP bar diameter and embedment length on the bond failure of FRP bars

    图  7  螺旋肋FRP筋与混凝土在横向上的受力分析

    Figure  7.  Force analysis in transverse direction for helically wound FRP bars and concrete

    Cross section for Fig.2, σh—Circumferential tensile stress, σr—Radial stress

    图  8  FRP筋直径及黏结长度对黏结强度的影响

    Figure  8.  Effect of bar diameter and embedment length on bond strength of FRP bars

    图  9  FRP筋黏结强度试验值与不同模型公式预测值的对比

    Figure  9.  Comparison of experimental bond strength for FRP bars to predicted values from different equations

    表  1  螺旋肋FRP筋黏结性能试验主要结果汇总

    Table  1.   Summary of main results from bond tests of helically wound FRP bars

    SourceSpecimenfc0/
    MPa
    Fiber/
    Resin*
    Ef/
    GPa
    ff/
    MPa
    db/
    mm
    lb/dbc/dbhrd/%wf/
    mm
    wc/
    mm
    CLRτm/
    MPa
    Failure mode
    Hao et al.[25]8-4-628.7Glass fiber (72%)

    Polyester (28%)
    41710848.886.003.01.00.2513.47P
    8-8-628.741710848.886.007.01.00.1314.58P
    8-12-628.741710848.886.0011.01.00.0813.40P
    8-16-628.741710848.886.0015.01.00.0612.87P
    8-20-628.741710848.886.0019.01.00.0511.63P
    8-24-628.741710848.886.0023.01.00.0411.22P
    8-8-428.741710848.884.007.01.00.1312.51P
    8-8-528.741710848.885.007.01.00.1313.37P
    8-8-728.741710848.887.007.01.00.1312.43P
    8-8-828.741710848.888.007.01.00.1313.68P
    8-8-928.741710848.889.007.01.00.1311.49P
    10-5-628.7417101047.006.004.01.00.2013.17P
    10-10-628.7417101047.006.009.01.00.1013.96P
    10-15-628.7417101047.006.0014.01.00.0713.22P
    10-20-628.7417101047.006.0019.01.00.0510.66P
    10-25-628.7417101047.006.0024.01.00.0410.46P
    10-30-628.7417101047.006.0029.01.00.0310.64P
    10-10-428.7417101047.004.009.01.00.1011.74P
    10-10-528.7417101047.005.009.01.00.1013.42P
    10-10-728.7417101047.007.009.01.00.1013.62P
    10-10-828.7417101047.008.009.01.00.1010.26P
    10-10-928.7417101047.009.009.01.00.1012.83P
    12-6-528.7417101245.755.005.01.00.179.23P
    12-12-528.7417101245.755.0011.01.00.0811.61P
    12-18-528.7417101245.755.0017.01.00.0610.83P
    12-24-528.7417101245.755.0023.01.00.049.39P
    12-12-328.7417101245.753.0011.01.00.088.07P
    12-12-428.7417101245.754.0011.01.00.0810.83P
    12-12-628.7417101245.756.0011.01.00.0812.99P
    12-12-728.7417101245.757.0011.01.00.0810.06P
    Baena et al.[26]R6-8-C1-129.34Glass fiber

    Polyester
    466897.07513.6419.5214.83.600.2019.12P
    Baena et al.[26]R6-8-C1-229.34Glass fiber

    Polyester
    466897.07513.6419.5214.83.600.2014.85P
    R6-12-C1-130.004668912.3557.608.8312.43.600.2215.83P
    R6-12-C1-229.344668912.3557.608.8312.43.600.2217.45P
    R6-8-C2-147.89466897.07513.6419.5214.83.600.2029.67P
    R6-8-C2-246.15466897.07513.6419.5214.83.600.2026.25P
    R6-12-C2-147.894668912.3557.608.8312.43.600.2224.67P
    R6-12-C2-247.894668912.3557.608.8312.43.600.2227.16P
    R6-16-C2-146.154668917.3655.264.8412.53.600.2219.55S
    R6-16-C2-247.894668917.3655.264.8412.53.600.2221.63S
    R6-19-C2-146.154668921.2554.214.8512.83.600.2217.16S
    R6-19-C2-246.154668921.2554.214.8512.83.600.2215.95S
    R6-16-C247.894668917.3655.265.7613.262.870.1821.58S
    R6-19-C246.154668921.2554.214.7113.502.920.1817.14S
    Solyom and Balazs[20]R11-8-C1-128.264Basalt fiber

    Vinyl ester
    661736858.888.252.811.750.3824.52P
    R11-8-C1-228.264661736858.888.252.811.750.3821.09P
    R11-8-C1-328.264661736858.888.252.811.750.3825.03P
    R11-8-C1-428.264661736858.888.252.811.750.3823.83P
    R12-12-C1-128.264Glass fiber

    Vinyl ester
    42.510001255.753.834.121.780.3015.88P
    R12-12-C1-228.26442.510001255.753.834.121.780.3013.28P
    R12-12-C1-328.26442.510001255.753.834.121.780.3016.25P
    R12-12-C1-428.26442.510001255.753.834.121.780.3015.11P
    R12-12-C2-152.8842.510001255.753.834.121.780.3023.96P
    R12-12-C2-252.8842.510001255.753.834.121.780.3030.95P
    R12-12-C2-352.8842.510001255.753.834.121.780.3028.04P
    R12-12-C2-452.8842.510001255.753.834.121.780.3030.50P
    R13-12-C1-128.26442.510001255.754.336.081.250.1715.29P
    R13-12-C1-228.26442.510001255.754.336.081.250.1715.21P
    R13-12-C1-328.26442.510001255.754.336.081.250.1715.01P
    R13-12-C1-428.26442.510001255.754.336.081.250.1716.02P
    R13-12-C2-152.8842.510001255.754.336.081.250.1718.23P
    R13-12-C2-252.8842.510001255.754.336.081.250.1718.38P
    R13-12-C2-352.8842.510001255.754.336.081.250.1718.77P
    R13-12-C2-452.8842.510001255.754.336.081.250.1716.98P
    Fahmy et al.[27]FWn10-146.8Basalt fiber (60%)

    Epoxy (30%)
    5511001057.006.00730.3020.37P
    FWn10-246.85511001057.006.00730.3021.47P
    FWn10-346.85511001057.006.00730.3020.08P
    Fahmy et al.[27]FWn10-446.8Basalt fiber (60%)

    Epoxy (30%)
    5511001057.006.00730.3021.07S
    FWn10-535.15511001057.006.00730.3019.3P
    FWn10-635.15511001057.006.00730.3019P
    FWn10-735.15511001057.006.00730.3019.87P
    FWn10-835.15511001057.006.00730.3018.09S
    FWn12-135.15511001255.755.838.63.40.2821.13P
    FWn12-235.15511001255.755.838.63.40.2819.56P
    FWn16-135.15511001654.196.0012.63.40.2111.69S
    FWn16-235.15511001654.196.0012.63.40.2112.08S
    Wang et al.[28]B1-55-0-136.08Carbon fiber (65%)

    Vinyl ester (35%)
    1521970105.57.006.007.62.80.2724.72P
    B1-55-0-236.081521970105.57.006.007.62.80.2725.71P
    B1-55-0-336.081521970105.57.006.007.62.80.2723.62P
    B1-110-0-136.08152197010117.006.007.62.80.2722.57P
    B1-110-0-236.08152197010117.006.007.62.80.2721.65P
    B1-110-0-336.08152197010117.006.007.62.80.2721.67P
    Zhang et al.[29]L5-R0-139.58Carbon fiber (65%)

    Vinyl ester (35%)
    153.31939.71057.006.007.122.60.2718.53P
    L5-R0-239.58153.31939.71057.006.007.122.60.2719.60P
    L5-R0-339.58153.31939.71057.006.007.122.60.2721.37P
    L7-R0-139.58153.31939.71077.006.007.122.60.2718.03P
    Zhang et al.[29]L7-R0-239.58Carbon fiber (65%)

    Vinyl ester (35%)
    153.31939.71077.006.007.122.60.2720.71P
    L7-R0-339.58153.31939.71077.006.007.122.60.2720.23P
    L10-R0-139.58153.31939.710107.006.007.122.60.2718.99P
    L10-R0-239.58153.31939.710107.006.007.122.60.2718.33P
    L10-R0-339.58153.31939.710107.006.007.122.60.2717.58P
    Basaran and Kalkan[18]G12 Ww/4.5-11-4.5-10-1/C3029.14Glass fiber--12104.545.06.310.1411.42P
    Shan et al.[30]CR8-20 NL-131.04Carbon fiber150180082.58.885.00710.12514.80P
    CR8-20 NL-231.04150180082.58.885.00710.12515.90P
    CR8-20 NL-331.04150180082.58.885.00710.12513.50P
    CR8-40 NL-131.041501800858.885.00710.12512.70P
    CR8-40 NL-231.041501800858.885.00710.12511.50P
    CR8-40 NL-331.041501800858.885.00710.12510.90P
    CR8-60 NL-131.36150180087.58.885.00710.12510.50P
    CR8-60 NL-231.36150180087.58.885.00710.1259.60P
    CR8-60 NL-331.36150180087.58.885.00710.12510.30P
    CR8-80 NL-131.3615018008108.885.00710.12510.20P
    CR8-80 NL-231.3615018008108.885.00710.1258.30P
    CR8-80 NL-331.3615018008108.885.00710.1259.40P
    Notes:Details of specimen symbols can be obtained in source references, *percent in bracket stands for fiber or resin content by volume; Ef, ff —Elastic modulus and ultimate tensile strength of FRP bars; fc0—Concrete compressive strength; db—Bar diameter; lb—Embedment length; c—Concrete cover; wr—FRP bar rib width; wc—Concrete rib width; hrd—Ratio of rib height to bar diameter; CLR—Concrete lug ratio; τm—Bond strength; P、S—Pullout and splitting failure.
    下载: 导出CSV
  • [1] 牛荻涛. 混凝土结构耐久性与寿命预测[M]. 北京: 科学出版社, 2003.

    NIU Ditao. Durability and life prediction of concrete structures[M]. BeiJing: Science Press, 2003(in Chinese).
    [2] 张伟平, 顾祥林, 金贤玉, 等. 混凝土中钢筋锈蚀机理及锈蚀钢筋力学性能研究[J]. 建筑结构学报, 2010, 31(S1):327-332.

    ZHANG Weiping, GU Xianglin, JIN Xianyu, et al. Study on corrosion mechanism of steel bars in concrete and mechanical performance of corroded steel bars[J]. Journal of Building Structures,2010,31(S1):327-332(in Chinese).
    [3] 冯鹏, 王杰, 张枭, 等. FRP与海砂混凝土组合应用的发展与创新[J]. 玻璃钢/复合材料, 2014(12):13-18.

    FENG Peng, WANG Jie, ZHANG Niao, et al. Development and innovation application of FRP and sea-sand concrete structures[J]. GFRP/composite materials,2014(12):13-18(in Chinese).
    [4] 滕锦光. 新材料组合结构[J]. 土木工程学报, 2005(12):1-11. doi: 10.3321/j.issn:1000-131X.2005.12.001

    TENG Jinguang. FRP reinforced concrete structures[J]. BeiJing:China Building Industry Press,2005(12):1-11(in Chinese). doi: 10.3321/j.issn:1000-131X.2005.12.001
    [5] NEPOMUCENO E, SENA-Cruz J, CORREIA L, et al. Review on the bond behavior and durability of FRP bars to concrete[J]. Construction and Building Materials,2021,287:123042. doi: 10.1016/j.conbuildmat.2021.123042
    [6] YAN F, LIN Z, YANG M. Bond mechanism and bond strength of GFRP bars to concrete: A review[J]. Composites Part B:Engineering,2016,98:56-69. doi: 10.1016/j.compositesb.2016.04.068
    [7] COSENZA E, MANFREDI G, REALFONZO R. Behavior and modeling of bond of FRP rebars to concrete[J]. Journal of Composites for Construction,1997,1(2):40-51. doi: 10.1061/(ASCE)1090-0268(1997)1:2(40)
    [8] ROSSETTI V A, GALEOTA D, GIAMMATTEO M M. Local bond stress-slip relationships of glass fibre reinforced plastic bars embedded in concrete[J]. Materials and Structures,1995,28(6):340-344. doi: 10.1007/BF02473149
    [9] ACHILLIDES Z, PILAKOUTAS K. Bond Behavior of fiber reinforced polymer bars under direct pullout conditions[J]. Journal of Composites for Construction,2004,8(2):173-181. doi: 10.1061/(ASCE)1090-0268(2004)8:2(173)
    [10] ROLLAND A, QUIERTANT M, KHADOUR A, et al. Experimental investigations on the bond behavior between concrete and FRP reinforcing bars[J]. Construction and Building Materials,2018,173:136-148. doi: 10.1016/j.conbuildmat.2018.03.169
    [11] El R A, AMMAR M, MASMOUDI R. Bond performance of basalt fiber-reinforced polymer bars to concrete[J]. Journal of Composites for Construction,2015,19(3):4014050. doi: 10.1061/(ASCE)CC.1943-5614.0000487
    [12] LEE J Y, KIM T Y, KIM T J, et al. Interfacial bond strength of glass fiber reinforced polymer bars in high-strength concrete[J]. Composites Part B:Engineering,2008,39(2):258-270. doi: 10.1016/j.compositesb.2007.03.008
    [13] AL-MAHMOUD F, CASTEL A, FRANÇOIS R, et al. Effect of surface pre-conditioning on bond of carbon fibre reinforced polymer rods to concrete[J]. Cement and Concrete Composites,2007,29(9):677-689. doi: 10.1016/j.cemconcomp.2007.04.010
    [14] WON J, PARK C, KIM H, et al. Effect of fibers on the bonds between FRP reinforcing bars and high-strength concrete[J]. Composites Part B:Engineering,2008,39(5):747-755. doi: 10.1016/j.compositesb.2007.11.005
    [15] MAZAHERIPOUR H, BARROS J A O, SENA-Cruz J M, et al. Experimental study on bond performance of GFRP bars in self-compacting steel fiber reinforced concrete[J]. Composite Structures,2013,95:202-212. doi: 10.1016/j.compstruct.2012.07.009
    [16] PARVIZI M, NOËL M, VASQUEZ J, et al. Assessing the bond strength of glass fiber reinforced polymer (GFRP) bars in portland cement concrete fabricated with seawater through pullout tests[J]. Construction and Building Materials,2020,263:120952. doi: 10.1016/j.conbuildmat.2020.120952
    [17] OKELO R, YUAN R L. Bond strength of fiber reinforced polymer rebars in normal strength concrete[J]. Journal of Composites for Construction,2005,9(3):203-213. doi: 10.1061/(ASCE)1090-0268(2005)9:3(203)
    [18] BASARAN B, KALKAN I. Investigation on variables affecting bond strength between FRP reinforcing bar and concrete by modified hinged beam tests[J]. Composite Structures,2020,242:112185. doi: 10.1016/j.compstruct.2020.112185
    [19] BASARAN B, KALKAN I. Development length and bond strength equations for FRP bars embedded in concrete[J]. Composite Structures,2020,251:112662. doi: 10.1016/j.compstruct.2020.112662
    [20] SOLYOM S, BALAZS G L. Bond of FRP bars with different surface characteristics[J]. Construction and Building Materials,2020,264:119839. doi: 10.1016/j.conbuildmat.2020.119839
    [21] SOLYOM S, BALAZS G L. Analytical and statistical study of the bond of FRP bars with different surface characteristics[J]. Composite Structures,2021,270:113953. doi: 10.1016/j.compstruct.2021.113953
    [22] Canadian Standards Association (CSA). Design and construction of building structures with fibre-reinforced polymers. (CAN/CSAS806-12)[S]. Toronto, Canada, 2012.
    [23] American Concrete Institute (ACI). Guide for the design and construction of structural concrete reinforced with fiber-reinforced polymer (FRP) bars. (ACI 440.1 R-15)[S]. Farmington Hills, MI, USA, 2015.
    [24] WEI W, LIU F, XIONG Z, et al. Bond performance between fibre-reinforced polymer bars and concrete under pull-out tests[J]. Construction and Building Materials,2019,227:116803. doi: 10.1016/j.conbuildmat.2019.116803
    [25] HAO Q, WANG Y, HE Z, et al. Bond strength of glass fiber reinforced polymer ribbed rebars in normal strength concrete[J]. Construction and Building Materials,2009,23(2):865-871. doi: 10.1016/j.conbuildmat.2008.04.011
    [26] BAENA M, TORRES L, TURON A, et al. Experimental study of bond behaviour between concrete and FRP bars using a pull-out test[J]. Composites Part B:Engineering,2009,40(8):784-797. doi: 10.1016/j.compositesb.2009.07.003
    [27] F. M. FAHMY M, A. S. AHMED S, WU Z. Bar surface treatment effect on the bond-slip behavior and mechanism of basalt FRP bars embedded in concrete[J]. Construction and Building Materials,2021,289:122844. doi: 10.1016/j.conbuildmat.2021.122844
    [28] WANG Q, ZHU H, TONG Y, et al. Bond-slip behaviour of the CFRP ribbed bars anchored with the innovative additional ribs in concrete[J]. Composite Structures,2021,262:113595. doi: 10.1016/j.compstruct.2021.113595
    [29] ZHANG B, ZHU H, WU G, et al. Improvement of bond performance between concrete and CFRP bars with optimized additional aluminum ribs anchorage[J]. Construction and Building Materials,2020,241:118012. doi: 10.1016/j.conbuildmat.2020.118012
    [30] 单波, 佟广权, 刘其元. CFRP筋与海水海砂混凝土黏结性能试验[J]. 建筑科学与工程学报, 2020, 37(05):113-123.

    SHAN Bo, TONG Guangquan, LIU Qiyuan. Experiment on bond performance of CFRP bars in seawater and sea sand concrete[J]. Journal of Architecture and Civil Engineering,2020,37(05):113-123(in Chinese).
    [31] ALVES J, El-RAGABY A, El-SALAKAWY E. Durability of GFRP bars' bond to concrete under different loading and environmental conditions[J]. Journal of Composites for Construction,2011,15(3):249-262. doi: 10.1061/(ASCE)CC.1943-5614.0000161
    [32] Japan Society of Civil Engineers(JSCE). Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials. (JSCE 1997)[S]. Japan, 1997.
    [33] Canadian Standards Association (CSA). Canadian highway bridge design code. (CAN/CSA S6-06)[S]. Toronto, Canada, 2006.
  • 加载中
计量
  • 文章访问数:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-18
  • 录用日期:  2022-04-03
  • 修回日期:  2022-03-25
  • 网络出版日期:  2022-04-28

目录

    /

    返回文章
    返回