留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

5-磺基水杨酸掺杂聚吡咯/ZIF67复合材料的超电容性能

李文青 王艺锟 王全璐 张婷婷 韩永芹

李文青, 王艺锟, 王全璐, 等. 5-磺基水杨酸掺杂聚吡咯/ZIF67复合材料的超电容性能[J]. 复合材料学报, 2022, 39(12): 5803-5815. doi: 10.13801/j.cnki.fhclxb.20211216.003
引用本文: 李文青, 王艺锟, 王全璐, 等. 5-磺基水杨酸掺杂聚吡咯/ZIF67复合材料的超电容性能[J]. 复合材料学报, 2022, 39(12): 5803-5815. doi: 10.13801/j.cnki.fhclxb.20211216.003
LI Wenqing, WANG Yikun, WANG Quanlu, et al. Supercapacitive performances of 5-sulfosalicylic acid doped polypyrrole/ZIF67 composites[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5803-5815. doi: 10.13801/j.cnki.fhclxb.20211216.003
Citation: LI Wenqing, WANG Yikun, WANG Quanlu, et al. Supercapacitive performances of 5-sulfosalicylic acid doped polypyrrole/ZIF67 composites[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5803-5815. doi: 10.13801/j.cnki.fhclxb.20211216.003

5-磺基水杨酸掺杂聚吡咯/ZIF67复合材料的超电容性能

doi: 10.13801/j.cnki.fhclxb.20211216.003
基金项目: 国家自然科学基金面上项目(52173258)
详细信息
    通讯作者:

    韩永芹,博士,副教授,博士生导师,研究方向为导电高分子复合材料 E-mail: hanyq@sdust.edu.cn

  • 中图分类号: TB332

Supercapacitive performances of 5-sulfosalicylic acid doped polypyrrole/ZIF67 composites

  • 摘要: 为充分利用金属-有机框架化合物(MOF)丰富的多孔结构与导电聚合物的独特掺杂结构,研究掺杂剂对MOF/导电聚合物复合材料的结构及电化学性能的影响,以实现稳定的化学掺杂。通过调控Co2+与2-甲基咪唑的摩尔配比常温反应制备得到三维花状结构的ZIF-67(命名为Z8);利用简便的原位聚合反应制备得到5-磺基水杨酸(5-SSA)掺杂聚吡咯(PPy)/Z8复合材料。Z8的引入能在一定程度上减少PPy微球的堆积,其与5-SSA之间的多重氢键、共轭效应等有利于PPy实现稳定的化学掺杂,其有利于电子及电解质离子的快速传输,并为PPy提供支撑。电化学测试结果表明,所有的复合材料中,PPy/10wt%Z8可获得最佳的电化学性能,其在1 A·g−1的电流密度下的比电容可达300 F·g−1。以PPy/10wt%Z8为正极,活性炭为负极,柔性碳布作为支撑体,聚乙烯醇(PVA)-H2SO4为电解质组装得到柔性非对称超级电容器,在1 mA·cm−2的电流密度下,其比电容为200 mF·cm−2,能量密度为71 μW·h·cm−2,功率密度为800 μW·cm−2,并且在10 mA·cm−2电流密度下循环10000次后,器件的电容保持率为80.2%,表现出良好的超电容特性。

     

  • 图  1  PPy/Z8复合材料的合成示意图

    Figure  1.  Schematic diagram of the synthesis process of PPy/Z8 composite

    APS—Ammonium persulfate; 5-SSA—5-sulfosalicylic acid; Z8—ZIF-67 with three-dimensional flower-like structure

    图  2  Z8 (a)、PPy (b)、PPy/5wt%Z8 (c)、PPy/10wt%Z8 (d)、PPy/20wt%Z8 (e) 和PPy/30wt%Z8 (f) 的SEM图像

    Figure  2.  SEM images of Z8 (a), PPy (b), PPy/5wt%Z8 (c), PPy/10wt%Z8 (d), PPy/20wt%Z8 (e) and PPy/30wt%Z8 (f)

    图  3  PPy/5wt%Z8 (a)、PPy/10wt%Z8 (b)、PPy/20wt%Z8 (c) 和PPy/30wt%Z8 (d) 的TEM图像

    Figure  3.  TEM images of PPy/5wt%Z8 (a), PPy/10wt%Z8 (b), PPy/20wt%Z8 (c) and PPy/30wt%Z8 (d)

    图  4  Z8、PPy、PPy/5wt%Z8、PPy/10wt%Z8、PPy/20wt%Z8和PPy/30wt%Z8的红外光谱图(a)和XRD图谱 (b);PPy、PPy/5wt%Z8、PPy/10wt%Z8、PPy/20wt%Z8和PPy/30wt%Z8的Raman图谱(c)和ESR图谱(d)

    Figure  4.  FTIR (a) and XRD (b) spectra of Z8, PPy, PPy/5wt%Z8, PPy/10wt%Z8, PPy/20wt%Z8 and PPy/30wt%Z8; Raman (c) and ESR (d) spectra of PPy, PPy/5wt%Z8, PPy/10wt%Z8, PPy/20wt%Z8 and PPy/30wt%Z8

    图  5  PPy、PPy/5wt%Z8、PPy/10wt%Z8、PPy/20wt%Z8和PPy/30wt%Z8的XPS全谱图 (a);PPy (b)、PPy/5wt%Z8 (c)、PPy/10wt%Z8 (d)、PPy/20wt%Z8 (e) 和PPy/30wt%Z8 (f) 的C1s XPS图谱

    Figure  5.  XPS spectra (a) of PPy, PPy/5wt%Z8, PPy/10wt%Z8, PPy/20wt%Z8 and PPy/30wt%Z8; C1s XPS spectra of PPy (b), PPy/5wt%Z8 (c), PPy/10wt%Z8(d), PPy/20wt%Z8 (e) and PPy/30wt%Z8 (f)

    图  6  PPy (a)、PPy/5wt%Z8 (b)、PPy/10wt%Z8 (c)、PPy/20wt%Z8 (d) 和 PPy/30wt%Z8 (e) 的N1s XPS谱图

    Figure  6.  N1s XPS spectra of PPy (a), PPy/5wt%Z8 (b), PPy/10wt%Z8 (c), PPy/20wt%Z8 (d) and PPy/30wt%Z8 (e)

    图  7  PPy和PPy/Z8在三电极体系中的CV曲线 (a); PPy/10wt%Z8在不同扫描速率下的CV曲线 (b);PPy和PPy/Z8在1 A·g−1下的GCD曲线 (c);PPy/10wt%Z8在不同电流密度下的GCD曲线 (d);PPy和PPy/Z8的EIS曲线 (e);Z8、PPy和PPy/Z8在10 A·g−1下的循环稳定性 (f)

    Figure  7.  CV curves of PPy and PPy/Z8 in three-electrode system (a); CV curves of PPy/10wt%Z8 at different scanning rates (b); GCD curves of PPy and PPy/Z8 under 1 A·g−1 (c); GCD curves of PPy/10wt%Z8 at different current densities (d); EIS curves of PPy and PPy/Z8 (e); Cyclic stability of Z8, PPy and PPy/Z8 at 10 A·g−1 (f)

    图  8  PPy/10wt%Z8//AC器件在不同电压范围内的CV曲线 (a);不同电流密度下的GCD曲线 (b) 和比电容值 (c);EIS曲线 (d);与文献中数据相比较的Ragone图[7,29-31] (e);在10 mA·cm−2下的循环稳定性 (f);点亮LED电路板的照片 (g)

    Figure  8.  CV curves of PPy/10wt%Z8//AC devices in different voltage ranges (a); GCD curves (b) and specific capacitance (c) under different current densities; EIS curve (d); Ragone plots of the devices comparing with the data previously reported[7,29-31] (e); Cycle stability at 10 mA·cm−2 (f); Photo of lit LED circuit board (g)

    表  1  聚吡咯(PPy)/Z8复合材料的命名

    Table  1.   Naming of polypyrrole (PPy)/Z8 composites

    Sample Mass fraction of Z8/wt%
    PPy/5wt%Z8 5
    PPy/10wt%Z8 10
    PPy/20wt%Z8 20
    PPy/30wt%Z8 30
    下载: 导出CSV
  • [1] CHEN C R, QIN H, CONG H P, et al. A highly stretchable and real-time healable supercapacitor[J]. Advanced Materials,2019,31(19):1900573. doi: 10.1002/adma.201900573
    [2] FURUKAWA H, CORDOVA K E, ÓKEEFFEE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science,2013,341(6149):1230444. doi: 10.1126/science.1230444
    [3] SHEN K, ZHANG L, CHEN X D, et al. Ordered macro-microporous metal-organic framework single crystals[J]. Science,2018,359(6372):206-210. doi: 10.1126/science.aao3403
    [4] YUE Y F, QIAO Z, FULVIO P, et al. Template-free synthesis of hierarchical porous metal-organic frameworks[J]. American Chemical Society,2013,135(26):9572-9575. doi: 10.1021/ja402694f
    [5] CAI G R, JIANG H L. A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability[J]. Angewandte Chemie International Edition,2017,56(2):563-567. doi: 10.1002/anie.201610914
    [6] LU C J, BEN T, XU S X, et al. Electrochemical synthesis of a microporous conductive polymer based on a metal-organic framework thin film[J]. Angewandte Chemie International Edition,2014,53(25):6454-6458. doi: 10.1002/anie.201402950
    [7] WANG L, FENG X, REN L T, et al. Flexible solid-state supercapacitor based on a metal–organic framework interwoven by electrochemically-deposited PANI[J]. American Chemical Society,2015,137(15):4920-4923. doi: 10.1021/jacs.5b01613
    [8] JIANG H Q, LIU X C, WU Y S, et al. Metal-organic frameworks for high charge-discharge rates in lithium-sulfur batteries[J]. Angewandte Chemie International Edition,2018,57(15):3916-3921. doi: 10.1002/anie.201712872
    [9] HOU R, MIAO M, WANG Q, et al. Integrated conductive hybrid architecture of metal-organic framework nanowire array on polypyrrole membrane for all-solid-state flexible supercapacitors[J]. Advanced Energy Materials,2020,10(1):1901892. doi: 10.1002/aenm.201901892
    [10] ZHOU J, YUAN Y, TANG J, et al. Metal-organic frameworks governed well-aligned conducting polymer/bacterial cellulose membranes with high areal capacitance[J]. Energy Storage Mater,2019,23:594-601. doi: 10.1016/j.ensm.2019.03.024
    [11] MOHMEYER A, SCHAATE A, HOPPE B, et al. Direct grafting-from of PEDOT from a photoreactive Zr-based MOF–a novel route to electrically conductive composite materials[J]. Chemical Communications Journal,2019,55(23):3367-3370. doi: 10.1039/C8CC10298H
    [12] XU X T, TANG J, QIAN H Y, et al. Three-dimensional networked metal-organic frameworks with conductive polypyrrole tubes for flexible supercapacitors[J]. ACS Applied Materials & Interfaces,2017,9(44):38737-38744.
    [13] ZHU C M, HE Y, LIU Y J, et al. ZnO@MOF@PANI core-shell nanoarrays on carbon cloth for high-performance supercapacitor electrodes[J]. Journal of Energy Chemistry,2019,35:124-131. doi: 10.1016/j.jechem.2018.11.006
    [14] GENG P B, CAO S, GUO X T, et al. Polypyrrole coated hollow metal-organic framework composites for lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2019,7(33):19465-19470. doi: 10.1039/C9TA05812E
    [15] YAO M Y, ZHAO X, ZHANG J X, et al. Flexible all-solid-state supercapacitors of polyaniline nanowire arrays deposited on electrospun carbon nanofibers decorated with MOFs[J]. Nanotechnology,2018,30(8):085404.
    [16] MA J X, LI J, GUO R, et al. Direct growth of flake-like metal-organic framework on textile carbon cloth as high-perfor-mance supercapacitor electrode[J]. Journal of Power Sources,2019,428:124-130. doi: 10.1016/j.jpowsour.2019.04.101
    [17] MA L T, FAN H Q, WEI X Y, et al. Towards high areal capacitance, rate capability, and tailorable supercapacitors: Co3O4@polypyrrole core-shell nanorod bundle array electrodes[J]. Journal of Materials Chemistry A,2018,6(39):19058-19065. doi: 10.1039/C8TA07477A
    [18] HUANG Z H, SONG Y, XU X X, et al. Ordered polypyrrole nanowire arrays grown on a carbon cloth substrate for a high-performance pseudocapacitor electrode[J]. ACS Applied Materials & Interfaces,2015,7(45):25506-25513.
    [19] XIE X, WU Y W, KONG Y Y, et al. Synthesis and characterization of multilayer core–shell structure hollow spheres with low density, favorable magnetic and conductive properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2012,408:104-113.
    [20] GROSS A F, SHERMAN E, VAJO J J. Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks[J]. Dalton Transactions,2012,41(18):5458-5460. doi: 10.1039/c2dt30174a
    [21] JIAO Y, CHEN G, CHEN D H, et al. Bimetal-organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage[J]. Journal of Materials Chemistry A,2017,5(45):23744-23752. doi: 10.1039/C7TA07464F
    [22] CHEN Z Y, ZHENG L Y, ZHU T, et al. All-solid-state flexible asymmetric supercapacitors fabricated by the binder-free hydrophilic carbon cloth@MnO2 and hydrophilic carbon cloth@polypyrrole electrodes[J]. Advanced Electronic Materials,2019,5(3):1800721. doi: 10.1002/aelm.201800721
    [23] KANEMOTO K, YAMAUCHI J. Electron-spin dynamics of polarons in lightly doped polypyrroles[J]. Physical Review B,2000,61(2):1075-1082. doi: 10.1103/PhysRevB.61.1075
    [24] LEI J T, CAI Z H, MARTIN C R. Effect of reagent concentrations used to synthesize polypyrrole on the chemical characteristics and optical and electronic properties of the resulting polymer[J]. Synthetic Metals,1992,46(1):53-69. doi: 10.1016/0379-6779(92)90318-D
    [25] SHALINI K, NADHRAH S, YUSRAN S. Unveiling high specific energy supercapacitor from layer-by-layer assembled polypyrrole/graphene oxide| polypyrrole/manganese oxide electrode material[J]. Scientific Reports,2019,9(1):4884. doi: 10.1038/s41598-019-41203-3
    [26] 李美超, 朱婉霞, 朱静娜, 等. 电解质溶液对聚吡咯电聚合中过氧化行为的影响[J]. 高等学校化学学报, 2012, 33(1):128-132.

    LI Meichao, ZHU Wanxia, ZHU Jingna, et al. Effect of electrolyte solution on oxidation behavior of polypyrrole electropolymerization[J]. Chemical Journal of Chinese Universities,2012,33(1):128-132(in Chinese).
    [27] WU C J, WANG J P, BAI Y, et al. Significant effect of cations on polypyrrole cycle stability[J]. Solid State Ionics,2020,346:115216. doi: 10.1016/j.ssi.2019.115216
    [28] RAUDSEPP T, MARANDI M, TAMM T, et al. Influence of ion-exchange on the electrochemical properties of polypyrrole films[J]. Electrochimica Acta,2014,122(10):79-86.
    [29] FU D Y, ZHOU H H, ZHANG X M, et al. Flexible solid-state supercapacitor of metal-organic framework coated on carbon nanotube film interconnected by electrochemically-codeposited PEDOT-GO[J]. ChemistrySelect,2016,1(2):285-289. doi: 10.1002/slct.201600084
    [30] QI K, HOU R Z, ZAMAN S, et al. Construction of metal-organic framework/conductive polymer hybrid for all-solid-state fabric supercapacitor[J]. ACS Applied Materials & Interfaces,2018,10(21):18021-18028.
    [31] FU D Y, LI H W, ZHANG X M, et al. Flexible solid-state supercapacitor fabricated by metal-organic framework/graphene oxide hybrid interconnected with PEDOT[J]. Materials Chemistry & Physics,2016,179(2):166-173.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  955
  • HTML全文浏览量:  479
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-09
  • 修回日期:  2021-11-28
  • 录用日期:  2021-12-08
  • 网络出版日期:  2021-12-17
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回