留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe3O4/聚二甲基硅氧烷改性胶原海绵及其油水分离性能

郭晨晨 张云龙 王瑜 丁翠翠 黄六莲 陈礼辉 张敏

郭晨晨, 张云龙, 王瑜, 等. Fe3O4/聚二甲基硅氧烷改性胶原海绵及其油水分离性能[J]. 复合材料学报, 2022, 39(10): 4652-4663. doi: 10.13801/j.cnki.fhclxb.20220506.001
引用本文: 郭晨晨, 张云龙, 王瑜, 等. Fe3O4/聚二甲基硅氧烷改性胶原海绵及其油水分离性能[J]. 复合材料学报, 2022, 39(10): 4652-4663. doi: 10.13801/j.cnki.fhclxb.20220506.001
GUO Chenchen, ZHANG Yunlong, WANG Yu, et al. Fe3O4/PDMS modified collagen sponge and its oil-water separation performance[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4652-4663. doi: 10.13801/j.cnki.fhclxb.20220506.001
Citation: GUO Chenchen, ZHANG Yunlong, WANG Yu, et al. Fe3O4/PDMS modified collagen sponge and its oil-water separation performance[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4652-4663. doi: 10.13801/j.cnki.fhclxb.20220506.001

Fe3O4/聚二甲基硅氧烷改性胶原海绵及其油水分离性能

doi: 10.13801/j.cnki.fhclxb.20220506.001
基金项目: 国家自然科学基金 (22178056;22078060)
详细信息
    通讯作者:

    张敏,博士,副教授,硕士生导师,研究方向为生物质高值转化与功能化 E-mail: mzhang@fafu.edu.cn

  • 中图分类号: TB332

Fe3O4/PDMS modified collagen sponge and its oil-water separation performance

  • 摘要: 为发展一种原料丰富、绿色环保、易于在复杂环境中操控使用、循环使用性好的多功能油水分离用海绵材料,采用浸渍法对胶原海绵进行聚二甲基硅氧烷(PDMS)/四氧化三铁(Fe3O4)纳米颗粒复合改性,制备了超疏水胶原基复合海绵(Fe3O4/PDMS-COL),表征了改性后化学结构与微观结构的变化,研究了油水分离性能。通过接触角测量可知:当胶原(COL)浓度为10 mg/mL、PDMS浓度为15vol%时,复合海绵的水接触角为150.3°。FTIR、XPS、XRD及TG测试结果表明Fe3O4/PDMS与胶原海绵成功发生复合,FE-SEM观察结果表明Fe3O4纳米粒子的加入可有效构造表面粗糙结构。海绵可吸附多种不同类型的油相如苯、正己烷、乙酸乙酯、真空泵油、花生油等,其中对乙酸乙酯的吸附量达47 g/g,且对不同油相的分离效率在99%以上。以苯为吸附物,连续循环使用20次后,海绵的接触角与磁性均未发生明显下降。海绵还可有效分离水包油乳液。在外加磁场作用下实施多种场景下的油水分离实验,Fe3O4/PDMS-COL表现出良好的磁操控性。此外,海绵还具有较好的阻燃性能。利用近红外光热响应性,Fe3O4/PDMS-COL还具备了吸附分离复杂环境中固体状油脂/水体系的潜力。

     

  • 图  1  胶原(COL)和PDMS浓度对海绵水接触角的影响

    Figure  1.  Effects of collagen (COL) and PDMS concentrations on water contact angle of sponges

    图  2  未改性胶原海绵、Fe3O4粉体、Fe3O4-COL海绵和Fe3O4/PDMS-COL复合海绵的FTIR图谱 (a)、XPS图谱 (b)、XRD图谱 (c) 及TG曲线 (d)

    Figure  2.  FTIR spectra (a), XPS spectrum (b), XRD patterns (c) and TG curves (d) of unmodified collagen sponge, Fe3O4 powder, Fe3O4-COL sponge and Fe3O4/PDMS-COL composite sponge

    图  3  Fe3O4/PDMS-COL海绵的FE-SEM图((a) 500倍放大倍率; (a1) 10000倍放大倍率; (a2) 20000倍放大倍率)与EDS图(b)

    Figure  3.  FE-SEM images ((a) 500 times magnification; (a1) 10000 times magnification; (a2) 20000 times magnification) and EDS images (d) of Fe3O4/PDMS-COL sponge

    图  4  Fe3O4/PDMS-COL海绵的磁性表现 (a)、对不同液滴的疏水表现 (b)、海绵内部的疏水表现 (c) 及在极端条件(冷冻、加热)下的疏水表现 (d)

    Figure  4.  Magnetic performance (a), hydrophobic performance toward different droplets (b), hydrophobic performance of the interior (c) and hydrophobic performance under different conditions (freezing, heating) (d) of Fe3O4/PDMS-COL sponge

    图  5  Fe3O4/PDMS-COL海绵分离轻油/水混合物 (a) 和重油/水混合物 (b)

    Figure  5.  Separation of light oil/water mixture (a) and heavy oil/water mixture (b) by Fe3O4/PDMS-COL sponge

    图  6  Fe3O4/PDMS-COL海绵在重力作用下的油水分离实验 ((a1)~(a3))、外部驱动作用下的抽滤实验 ((b1)~(b3)) 和外部驱动作用下的连续性油水分离实验 ((c1)~(c3))

    Figure  6.  Oil-water separation experiment under gravity ((a1)-(a3)), filtration experiment under external drive ((b1)-(b3)) and continuous oil-water separation experiment under external drive ((c1)-(c3)) of Fe3O4/PDMS-COL sponge

    图  7  Fe3O4/PDMS-COL海绵对不同油相的吸附容量 (a)、对不同油相的分离效率 (b)、苯每次循环利用后的水接触角 (c) 和20次循环利用后的磁性图 (d)

    Figure  7.  Absorption capacity toward different oils (a), adsorption efficiency toward different oils (b), water contact angle after each recycling from benzene (c) and magnetic diagram after 20 cycles of recycling (d)

    图  8  水包油(O/W)型乳液分离实验 (a) 和乳液分离前后的光学显微镜图像 (b)

    Figure  8.  Oil in water (O/W) emulsion separation experiment (a) and optical microscope images before and after emulsion separation (b)

    图  9  ((a1)~(a3)) Fe3O4/PDMS-COL海绵在弯管内的油水分离实验;((b1)~(b5)) 在U形管中水层下方重油的去除情况(该管中包含三相液体,分别为:正己烷(上层,透明,轻油)、水(中层,蓝色)和三氯甲烷(下层,红色,重油))

    Figure  9.  ((a1)-(a3)) Oil-water separation experiment of Fe3O4/PDMS-COL sponge on curved track; ((b1)-(b5)) Removal of heavy oil under the water layer in the U-shaped tube (The tube contains three-phase liquids, namely n-hexane (upper layer, transparent, light oil) , water (middle layer, blue) and chloroform (lower layer, red, heavy oil))

    图  10  Fe3O4/PDMS-COL海绵的阻燃效果 ((a), (b))、燃烧后海绵的外观状态 (c) 及疏水性 (d)

    Figure  10.  Flame retardant effect of Fe3O4/PDMS-COL sponge ((a), (b)), appearance status (c) and hydrophobicity (d) of Fe3O4/PDMS-COL sponge after combustion

    图  11  近红外光热效应下Fe3O4/PDMS-COL海绵的固体油脂/水分离情况

    Figure  11.  Separation of solid oil/water by Fe3O4/PDMS-COL sponge under near infrared photothermal effect

    表  1  不同聚二甲基硅氧烷(PDMS)与胶原浓度下海绵的接触角

    Table  1.   Contact angles of sponges at different concentrations of polydimethylsiloxane (PDMS) and collagen

    PDMS
    concentration/
    vol%
    Contact
    angle/(°)
    Collagen
    concentration/
    (mg·mL−1)
    Contact
    angle/(°)
    5114.7±0.23109.0±0.3
    10120.1±0.56114.6±0.5
    15150.3±0.610150.3±0.5
    20149.0±0.315140.3±0.4
    30150.5±0.320125.7±0.7
    下载: 导出CSV
  • [1] DUBANSKY B, WHITEHEAD A, MILLER J T, et al. Multitissue molecular, genomic, and developmental effects of the deepwater horizon oil spill on resident gulf killifish (Fundulus grandis)[J]. Environmental Science & Technology,2013,47(10):5074-5082. doi: 10.1021/es400458p
    [2] SU L, WANG H J, NIU M, et al. Ultralight, recoverable, and high-temperature-resistant SiC nanowire aerogel[J]. ACS Nano,2018,12(4):3103-3111. doi: 10.1021/acsnano.7b08577
    [3] JAYARAMULU K, GEYER F, PETR M, et al. Shape controlled hierarchical porous hydrophobic/oleophilic metal-organic nanofibrous gel composites for oil adsorption[J]. Advanced Materials,2017,29(12):1605307. doi: 10.1002/adma.201605307
    [4] 纪浩楠, 易昌凤, 徐祖顺, 等. 二氧化钛/ZIF-8复合超疏水海绵的制备及其油水分离性能[J/OL]. 复合材料学报: 1-10[2022-08-30]. DOI: 10.13801/j.cnki.fhclxb.20211217.001.

    JI Haonan, YI Changfeng, XU Zushun, et al. Preparation of titanium dioxide/ZIF-8 composite superhydrophobic sponge and its oil-water separation performance[J]. Acta Materiae Compositae Sinica: 1-10[2022-08-30](in Chinese). DOI: 10.13801/j.cnki.fhclxb.20211217.001.
    [5] 管浩, 戴鑫建, 王鑫, 等. 木基多孔油水分离材料研究进展[J]. 木材科学与技术, 2022, 36(1):1-8. doi: 10.12326/j.2096-9694.2021183

    GUAN Hao, DAI Xinjian, WANG Xin, et al. Research review of wood-based porous materials for oil/water separation[J]. Chinese Journal of Wood Science and Technology,2022,36(1):1-8(in Chinese). doi: 10.12326/j.2096-9694.2021183
    [6] 叶泽权, 吴青芸, 顾林. 纤维素基油水分离材料研究进展[J]. 化工进展, 2022, 41(6): 3038-3050.

    YE Zequan, WU Qingyun, GU Lin. Recent progress in cellulose-based materials for oil-water separation[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3038-3050(in Chinese).
    [7] YANG Q, TANG L, GUO C, et al. A bioinspired gallol-functionalized collagen as wet-tissue adhesive for biomedical applications[J]. Chemical Engineering Journal,2021,417:127962. doi: 10.1016/j.cej.2020.127962
    [8] LI Y, ZHANG H, MA C, et al. Durable, cost-effective and superhydrophilic chitosan-alginate hydrogel-coated mesh for efficient oil/water separation[J]. Carbohydrate Polymers,2019,226:115279. doi: 10.1016/j.carbpol.2019.115279
    [9] LI L, LIU L, LEI J, et al. Intelligent sponge with reversibly tunable super-wettability: Robust for effective oil–water separation as both the absorber and filter tolerate fouling and harsh environments[J]. Journal of Materials Chemistry A,2016,4(31):12334-12340. doi: 10.1039/C6TA03581G
    [10] WU J, DING Y, WANG J, et al. Facile fabrication of nanofiber- and micro/nanosphere-coordinated PVDF membrane with ultrahigh permeability of viscous water-in-oil emulsions[J]. Journal of Materials Chemistry A,2018,6(16):7014-7020. doi: 10.1039/C8TA01539B
    [11] SUREWICZ W K, MANTSCH H H, CHAPMAN D. Determination of protein secondary structure by Fourier transform infrared spectroscopy: A critical assessment[J]. Biochemistry,1993,32(2):389-394. doi: 10.1021/bi00053a001
    [12] YANG K, PENG H, WEN Y, et al. Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles[J]. Applied Surface Science,2010,256(10):3093-3097. doi: 10.1016/j.apsusc.2009.11.079
    [13] ZHOU D, WANG L, CHEN X, et al. Reaction mechanism investigation on the esterification of rosin with glycerol over annealed Fe3O4/MOF-5 via kinetics and TGA-FTIR analysis[J]. Chemical Engineering Journal,2020,401:126024. doi: 10.1016/j.cej.2020.126024
    [14] JEON H, LEE C S, PATEL R, et al. Well-organized meso-macroporous TiO2/SiO2 film derived from amphiphilic rubbery comb copolymer[J]. ACS Applied Materials & Interfaces,2015,7(14):7767-7775. doi: 10.1021/acsami.5b01010
    [15] LIU Y, WANG X, FENG S. Nonflammable and magnetic sponge decorated with polydimethylsiloxane brush for multitasking and highly efficient oil-water separation[J]. Advanced Functional Materials,2019,29(29):1902488. doi: 10.1002/adfm.201902488
    [16] RADU G L, BAIULESCU G L. Surface analysis of collagen membranes by X-ray photoelectron spectroscopy[J]. Journal of Molecular Structure,1992,293:265-268. doi: 10.1016/0022-2860(93)80064-3
    [17] SHARAN J, KOUL V, DINDA A K, et al. Bio-functionalization of grade V titanium alloy with type I human collagen for enhancing and promoting human periodontal fibroblast cell adhesion—An in-vitro study[J]. Colloids and Surfaces B: Biointerfaces,2018,161:1-9. doi: 10.1016/j.colsurfb.2017.10.024
    [18] SCHNYDER B, LIPPERT T, KÖTZ R, et al. UV-irradiation induced modification of PDMS films investigated by XPS and spectroscopic ellipsometry[J]. Surface Science,2003,532-535:1067-1071.
    [19] LI J J, ZHOU Y N, LUO Z H. Mussel-inspired V-shaped copolymer coating for intelligent oil/water separation[J]. Chemical Engineering Journal,2017,322:693-701. doi: 10.1016/j.cej.2017.04.074
    [20] SU X, LI H, LAI X, et al. Dual-functional superhydrophobic textile with asymmetric roll-down/pinned states for water droplet transportation and oil-water separation[J]. ACS Applied Materials & Interfaces,2018,10(4):4213-4221. doi: 10.1021/acsami.7b15909
    [21] ZHANG Y, CHAI C P, LUO Y J, et al. Synthesis, structure and electromagnetic properties of mesoporous Fe3O4 aerogels by sol-gel method[J]. Materials Science and Engineering: B,2014,188:13-19. doi: 10.1016/j.mseb.2014.06.002
    [22] NEWBURY D E. Mistakes encountered during autom-atic peak identification in low beam energy X-ray microanalysis[J]. Scanning,2007,29(4):137-151. doi: 10.1002/sca.20009
    [23] YU T, HALOUANE F, MATHIAS D, et al. Preparation of magnetic, superhydrophobic/superoleophilic polyurethane sponge: Separation of oil/water mixture and demulsification[J]. Chemical Engineering Journal,2020,384:123339. doi: 10.1016/j.cej.2019.123339
    [24] GE J, JIN Q, ZONG D, et al. Biomimetic multilayer nanofibrous membranes with elaborated superwettability for effective purification of emulsified oily wastewater[J]. ACS Applied Materials & Interfaces,2018,10(18):16183-16192. doi: 10.1021/acsami.8b01952
    [25] 许亮鑫. 特殊浸润性海绵的制备及油水分离应用研究[D]. 北京: 清华大学, 2016.

    XU Liangxin. Research on preparation of special wettable sponge and application of oil-water separation[D]. Beijing: Tsinghua University, 2016(in Chinese).
    [26] 贺兵. 高抗污油水分离膜制备及分离性能的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    HE Bing. Preparation of superantifouling membrance for oil-water separation and study of separation performance[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [27] LEI Z, DENG Y, WANG C. Multiphase surface growth of hydrophobic ZIF-8 on melamine sponge for excellent oil/water separation and effective catalysis in a Knoevenagel reaction[J]. Journal of Materials Chemistry A,2018,6(7):3258-3263. doi: 10.1039/C7TA10566E
    [28] WANG F, LI X S, LI W T, et al. Dextran coated Fe3O4 nanoparticles as a near-infrared laser-driven photothermal agent for efficient ablation of cancer cells in vitro and in vivo[J]. Materials Science and Engineering: C,2018,90:46-56. doi: 10.1016/j.msec.2018.04.030
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1085
  • HTML全文浏览量:  508
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-28
  • 修回日期:  2022-04-16
  • 录用日期:  2022-04-23
  • 网络出版日期:  2022-05-07
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回