留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于纳米银颗粒-聚多巴胺-碳纳米管导电材料的三明治型柔性应变传感器

刘彩霞 卢柏声 李帅 马菲 黄英 夏悦然

刘彩霞, 卢柏声, 李帅, 等. 基于纳米银颗粒-聚多巴胺-碳纳米管导电材料的三明治型柔性应变传感器[J]. 复合材料学报, 2022, 39(0): 1-11
引用本文: 刘彩霞, 卢柏声, 李帅, 等. 基于纳米银颗粒-聚多巴胺-碳纳米管导电材料的三明治型柔性应变传感器[J]. 复合材料学报, 2022, 39(0): 1-11
Caixia LIU, Baisheng LU, Shuai LI, Fei MA, Ying HUANG, Yueran XIA. Sandwich flexible strain sensor based on silver nanoparticles-polydopamine-carbon nanotube conductive material[J]. Acta Materiae Compositae Sinica.
Citation: Caixia LIU, Baisheng LU, Shuai LI, Fei MA, Ying HUANG, Yueran XIA. Sandwich flexible strain sensor based on silver nanoparticles-polydopamine-carbon nanotube conductive material[J]. Acta Materiae Compositae Sinica.

基于纳米银颗粒-聚多巴胺-碳纳米管导电材料的三明治型柔性应变传感器

基金项目: 中央高校基本科研业务费专项资金资助(JZ2020HGTB0027,JZ2020HGQA0166);浙江省“尖兵”“领雁”研发攻关计划项目(2022C03052)
详细信息
    通讯作者:

    黄英,博士,教授,博士生导师,研究方向为敏感电子学与传感技术 E-mail: hf.hy@163.com

  • 中图分类号: TB383

Sandwich flexible strain sensor based on silver nanoparticles-polydopamine-carbon nanotube conductive material

  • 摘要: 着眼医疗保健、软机器人和人机交互等领域柔性应变传感器需兼备高灵敏和宽工作应变范围,本工作设计基于纳米银颗粒-聚多巴胺-碳纳米管(AgNPs-PDA-CNT)的敏感材料体系,制备一种层层包覆型三明治结构柔性应变传感器。材料表征和特性测试结果表明,借助PDA黏附性和还原性,AgNPs均匀分散且固定在PDA-CNT表面。独特制备工艺使得AgNPs-PDA-CNT导电材料紧密结合硅橡胶毛细管内壁和聚二甲基硅氧烷(PDMS),AgNPs-PDA-CNT渗入PDMS且浓度呈梯度分布。传感器具有高灵敏系数(GF)和宽工作应变范围(0~44%时GF为69.04,44%~66%时GF为253.13,66%~76%时GF为1253.8)、快速响应(75 ms)和恢复(90 ms)、良好稳定性和重复性。将传感器应用于人体运动精确监测、软体手指本体感知与软抓手抓取行为监测,取得良好应用效果。

     

  • 图  1  纳米银颗粒-聚多巴胺-碳纳米管(AgNPs-PDA-CNT)导电材料 (a) 和应变传感器 (b) 制备流程图

    Figure  1.  Preparation diagram of silver nanoparticles-polydopamine- carbon nanotubes (AgNPs-PDA-CNT) conductive material (a) and strain sensor (b)

    图  2  CNT、PDA-CNT和AgNPs-PDA-CNT的XRD (a)和XPS (b)光谱;AgNPs-PDA-CNT的C1s (c)和Ag3d (d)

    Figure  2.  XRD pattern (a) and XPS spectra (b) of CNT, PDA-CNT and AgNPs-PDA-CNT. C1s (c) and Ag3d (d) of AgNPs-PDA-CNT

    图  3  CNT (a)、PDA-CNT (b)、AgNPs-CNT (c)和AgNPs-PDA-CNT (d)的TEM图

    Figure  3.  TEM images of CNT (a), PDA-CNT (b), AgNPs-CNT (c) and AgNPs-PDA-CNT (d)

    图  4  硅橡胶(SR)-(AgNPs-PDA-CNT)/PDMS-PDMS的SEM图

    Figure  4.  SEM images of silicone rubber (SR)-(AgNPs-PDA-CNT)/PDMS-PDMS

    图  5  柔性应变传感器应变传感机制示意图

    Figure  5.  Schematic diagram of strain sensing mechanism of flexible strain sensor

    图  6  各导电材料对传感器的应变与相对电阻的全程(a)和40%应变内(b)变化关系比较

    Figure  6.  Comparison of strain and relative resistance of conductive material to sensor in the whole process (a) and within 40% strain (b)

    图  7  SR-(AgNPs-PDA-CNT)/PDMS-PDMS柔性应变传感器在持续大应变(a)、60%应变瞬态输入响应(b)、5次小应变(c)和大应变(d)下相对电阻随时间的变化

    Figure  7.  Relative resistance of SR-(AgNPs-PDA-CNT)/PDMS-PDMS flexible strain sensor changes with time under continuous large strain (a), 60% strain transient input response (b), 5 times small strain (c) and large strain (d)

    图  8  导电材料为CNT (a)、PDA-CNT (b)、AgNPs-CNT (c)和AgNPs-PDA-CNT (d)的柔性应变传感器40%应变下重复性

    Figure  8.  Repeatability of flexible strain sensors with conductive materials of CNT (a), PDA-CNT (b), AgNPs-CNT (c) and AgNPs-PDA-CNT (d) at 40% strain

    图  9  SR-(AgNPs-PDA-CNT)/PDMS-PDMS柔性应变传感器的应用:脉搏(a)、按压(b)、手指弯曲(c)、手腕弯曲(d)、软体手指弯曲角度与相对电阻变化关系(e)和软抓手抓取行为感知(f)

    Figure  9.  Application of SR-(AgNPs-PDA-CNT)/PDMS-PDMS flexible strain sensor: Pulse (a), compression (b), finger (c) bending, wrist bending (d), relationship between soft finger bending angle and relative resistance (e) and perception of soft grip grasping behavior (f)

  • [1] 张阳阳, 黄英, 刘月, 等. 基于多传感器信息融合的人类抓握特征学习及物体识别[J]. 机器人, 2020, 42(3):267-276.

    ZHANG Yangyang, HUANG Ying, LIU Yue, et al. Human grasp feature learning and object recognition based on multi-sensor information fusion[J]. Robot,2020,42(3):267-276(in Chinese).
    [2] SONG Z Q, LI W Y, BAO Y, et al. Breathable and skin-mountable strain sensor with tunable stretchability, sensitivity, and linearity via surface strain delocalization for versatile skinactivities’ recognition[J]. ACS Applied Materials & Interfaces,2018,10:42826-42836.
    [3] 向东, 张学忠, 陈小雨, 等. 基于双向拉伸制备还原氧化石墨烯-碳纳米管复合薄膜的高性能柔性压阻传感器[J]. 复合材料学报, 2021, 38(0):1-11.

    XIANG Dong, ZHANG Xuezhong, CHEN Xiaoyu, et al. High performance flexible piezoresistive strain sensor based on biaxially stretched conductive polymer composite films with reduced graphene oxide-carbon nanotubes[J]. Acta Materiae Compositae Sinica,2021,38(0):1-11(in Chinese).
    [4] 李瑞青, 李思明, 陈天骄, 等. 基于可膨胀微球/聚二甲基硅氧烷复合介电层的柔性电容式压力传感器[J]. 复合材料学报, 2021, 38(7):2152-2161.

    LI Ruiqing, LI Siming, CHEN Tianjiao, et al. Flexible capacitive pressure sensor based on expandable microsphere/ polydimethylsiloxane composite dielectric layer[J]. Acta Materiae Compositae Sinica,2021,38(7):2152-2161(in Chinese).
    [5] CHEN Y, WANG L, WU Z F, et al. Super-hydrophobic, durable and cost-effective carbon black/ rubber composites for high performance strain sensors[J]. Composites Part B,2019,176:107358. doi: 10.1016/j.compositesb.2019.107358
    [6] GUO D J, PAN X D, XIE Y, et al. Effects of service condition on the performance of conductive polymer composites for flexible strain sensors[J]. Sensors and Actuators A:Physical,2020,318(9):112494.
    [7] 潘朝莹, 马建中, 张文博, 等. 柔性导电高分子复合材料在应变传感器中的应用[J]. 化学进展, 2020, 32(10):1592-1607.

    PAN Chaoying, MA Jianzhong, ZHANG Wenbo, et al. Flexible conductive polymer composites in strain sensors[J]. Progress in Chemistry,2020,32(10):1592-1607(in Chinese).
    [8] SUN H L, DAI K, ZHAI W, et al. A highly sensitive and stretchable yarn strain sensor for human motion tracking utilizing a wrinkle-assisted crack structure[J]. ACS Applied Materials & Interfaces,2019,11(39):36052-36062.
    [9] ZHU G J, REN P G, GUO H, et al. Highly sensitive and stretchable polyurethane fiber strain sensors with embedded silver nanowires[J]. ACS Applied Materials & Interfaces,2019,11(26):23649-23658.
    [10] 张明艳, 杨振华, 吴子剑, 等. 新型三明治结构聚二甲基硅氧烷/聚偏氟乙烯-纳米Ag线/聚二甲基硅氧烷柔性应变传感器的制备与性能[J]. 复合材料学报, 2020, 37(5):1024-1032.

    ZHANG Mingyan, YANG Zhenhua, WU Zijian, et al. Preparation and properties of a novel sandwich structure polydimethylsiloxane/ polyvinylidene fluoride-Ag nanowires/ polydimethylsiloxane flexible strain sensor[J]. Acta Materiae Compositae Sinica,2020,37(5):1024-1032(in Chinese).
    [11] ZOU Q S, HE K, OU-YANG J, et al. Highly sensitive and durable sea-urchin-shaped silver nanoparticles strain sensors for human-activity monitoring[J]. ACS Applied Materials & Interfaces,2021,13(12):14479-14488.
    [12] WANG X, LI J F, SONG H N, et al. Highly stretchable and wearable strain sensor based on printable carbon nanotube layers / polydimethylsiloxane composites with adjustable sensitivity[J]. ACS Applied Materials & Interfaces,2018,10(8):7371-7380.
    [13] 张啸梅, 杨凯, 焦明立, 等. 纺织材料基可穿 戴柔性应力/应变传感器的发展及应用[J]. 上 海纺织科技, 2020, 48(8):17-21.

    ZHANG Xiaomei, YANG Kai, JIAO Mingli, et al. Development and application of fiber-based wearable flexible stress/ strain sensors[J]. Shanghai Textile Science & Technology,2020,48(8):17-21(in Chinese).
    [14] AMJADI M, KYUNG K, PARK I, et al. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review[J]. Advanced Functional Materials,2016,26(11):1678-1698. doi: 10.1002/adfm.201504755
    [15] LEE H A, MA Y, ZHOU F, et al. Material-independent surface chemistry beyond polydopamine coating[J]. Accounts of Chemical Research,2019,52(3):704-713. doi: 10.1021/acs.accounts.8b00583
    [16] RYU J H, MESSERSMITH P B, LEE H. Polydopamine surface chemistry: a decade of discovery[J]. ACS Applied Materials & Interfaces,2018,10(9):7523-7540.
    [17] CHOI G H, RHEE D K, PARK A R. Ag nanoparticle/ polydopamine-coated inverse opals as highly efficient catalytic membranes[J]. ACS Applied Materials & Interfaces,2016,8(5):3250-3257.
    [18] ZHANG Y Y, HUANG Y, LIU P, et al. Highly stretchable strain sensor with wide linear region via hydrogen bond-assisted dual-mod cooperative conductive network for gait detection[J]. Composites Science and Technology,2020,191:108070. doi: 10.1016/j.compscitech.2020.108070
    [19] QI P D, LI N, QU C B, et al. Understanding the cycling performance degradation mechanism of a graphene-based strain sensor and an effective corresponding improvement solution[J]. ACS Applied Materials & Interfaces,2020,12(20):23272-23283.
    [20] WU X X, NIU F F, ZHONG A, et al. Highly sensitive strain sensors based on hollow packaged silver nanoparticle-decorated three-dimensional graphene foams for wearable electronics[J]. RSC Advances,2019,9:39958-39964. doi: 10.1039/C9RA08118F
    [21] ZHANG R, LI S Q, YING C, et al. Bioinspired design of flexible strain sensor with high performance based on gradient filler distributions[J]. Composites Science and Technology,2020,200(45):108319.
    [22] ZHANG R, YING C, GAO H, et al. Highly flexible strain sensors based on polydimethylsiloxane/ carbon nanotubes(CNTs) prepared by a swelling/ permeating method and enhanced sensitivity by CNTs surface modification[J]. Composites Science and Technology,2019,171(FEB.8):218-225.
    [23] BOLAND C S, KHAN U, BACKES C, et al. Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites[J]. ACS Nano,2014,8(9):8819-8830. doi: 10.1021/nn503454h
    [24] 葛怡, 于晓灵, 张艳丹, 等. 全氟辛基季胺碘化物改性碳纳米管对天然橡胶胶乳性能的影响[J]. 复合材料学报, 2017, 34(12):2841-2845.

    GE Yi, YU Xiaoling, ZHANG Yandan, et al. Effect of trimethyl-1-propanaminium iodide modified carbon nanotube on properties of natural rubber latex[J]. Acta Materiae Compositae Sinica,2017,34(12):2841-2845(in Chinese).
    [25] PHAN H T, HAES A J. What does nanoparticle stability mean[J]. The Journal of Physical Chemistry,2019,123(27):16495-16507.
    [26] PEI Z, LIU Y, ZHANG Q, et al. Highly sensitive, stretchable strain sensor based on Ag@COOH-functionalized CNTs for stroke and pronunciation recognition[J]. Advanced Electronic Materials,2019,5(7):1900227. doi: 10.1002/aelm.201900227
    [27] LI W J, LI Y, SHENG M, et al. Enhanced adhesion of carbon nanotubes by dopamine[J]. Langmuir,2019,35(13):4527-4533. doi: 10.1021/acs.langmuir.9b00192
    [28] 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2020, 42(5):168-177.

    TANG Jian, YAN Tao, PAN Zhijuan. Research progress of flexible strain sensors Based on conductive composite fibers[J]. Journal of Textile Research,2020,42(5):168-177(in Chinese).
  • 加载中
计量
  • 文章访问数:  158
  • HTML全文浏览量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-29
  • 录用日期:  2021-12-13
  • 修回日期:  2021-12-04
  • 网络出版日期:  2022-01-10

目录

    /

    返回文章
    返回